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-- ,ABSTRACT

Any transistor (or other electronic component) from a production line may be either

perfect or defec:ive. The lifetime distributions of both types are assumed known. We

focus here on the case where the perfect items never fail. Before any item is put in use,

it is often the case that each production lot is tested to eliminate some of its defectives,

i.e. the lot is subjected to burn-in. Here, the purpose of bum-in is to ensure with a

-v given confidence level that an item chosen randomly from the test survivors has a given

probability of operating properly for a given time period. This is the same as ensuring,

"- after bum-in, the ratio of the number of defectives to the number of perfects is less than

2some bound with a desired level of probability.

Three without-replacement procedures are considered. Small sample theory is

investigated for various assumptions about the information available concerning the

number of defectives by using both analytic techniques and simulation. Large sample

theorv is studied, as well. It involves limiting distributions of order statistics, quantile

processes and boundary crossing probabilities of a brownian bridge.

This study shows that the first two procedures are sensitive to the number of

C-: defective items assumed and the performance of the third procedure is not.
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%J$ INTRODUCTION

• N' §1.1 The Motivation

Suppose you plan to buy a personal computer ( or any durable good ) and there are

several similar machines available on the market. Do you prefer to buy the one with free

two-year service warranty or to buy the one without any warranty with the same price?

Certainly, people prefer to buy the one with free two-year service warranty. How can
-. the manufacturers offer this kind of two-year service free warranty without it costing

%"-. them too much? Personal computers are mostly made of electronic components:

microprocessor, TTL, ROM, RAM, PCB, etc.. In order to ensure a personal computer
flawlessly working for two years, all of its components must be able to work perfectly

- for at least two years. Actually, some of its components are likely to fail during this
two-year period. Therefore, the compontnt replacement and the required service will

cost the manufacturer some money. In order to prevent the occurrence of any failure

during the warranty period and to reduce the replacement and service cost, th..parts or

a,? components used to build this computer should have some very high pre-specified

pro",ability of surving for no less thn two years. The underlined part of the above

sentence is the (reliability) goal of this research. Here, three burn-in (bum-in will be
%'e defined in section 1.3) procedures are designed to achieve this goal.
%'.
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".1.2 Defective Items and Good (Perfect) Items

Let's look at some useful characteristics of the electronic components, for example

the semiconductors. (The application of this research is restricted to the bum-in test of

semiconductors.) The interval right-after-manufacture during which a component (or

item) may fail is often called as an early failure period or infant mortaliypd.

Failures during this period are often referred as early failure or infant mortalities. The

early failure can be caused by process defects or testing error or marginal design
p

(Rickers (1978), or Jensen and Peterson (1982)). In this research, any item from a

production line is classified as a dft.iv,.itm if its failure is caused by process defect0
or testing errors. The others are classified as g. ( or perft. ) ik=_j. Like Jensen and

Peterson (1982), we assume that the life time of any good item is considerably longer

*than that of any defective item i.e., the defective items deteriorate faster than the good

...- items. So, tl- e failure rate decreases as the testing time goes on.

As pointed out in many papers, the lifetime distributions of semiconductors from

any production lot tend to have. bimodal distributions: one mode for the subpopulation

of the defective items and the other mode for the subpopulation of the good items. The

percentage c-f the defective items is about 2 to 25 percent cf the whole population. For

example, the life tests on lk RAMs and 16k ROMs, which is discussed in Edwards et

al. (1978), show the proportions of the defective items from 2% to 5%; a study of

transistor reliability at the Bell Laboratories ( Peck and Zierdt (1974)) indicates 10% of

defective items; ar.d an experiment on CMOS trarsistors from RCA (Stitch et al.

(1975)) shows 25% of defectives. Moreover, ihere are many more examples discussed

in Jenscn and Peterson (1982).

Z..
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Several bimodal life time distributions of the good items and the defective items are

proposed in the literature: mixtures of log-normal distribution by Holcomb and North

(1984), by Jensen and Peterson (1982) and by Hallberg (1977); mixtures of Weibull

distribution by Jensen and Peterson (1982 and 1979) and by Holcomb and North

(1985).

The life time distributions of both the defective items and the perfect items are

assumed known and exponential in this study. Several useful properties about the

exponential distribution are used to develop the burn-in procedures designed in this

research to achieve the (reliability) goal mentioned in §1. 1.

If the life time distributions of both types of items are known but not exponential,

each can be transformed into the exponential distributions by an appropriate probability

(integral) transformation. However, one transformation usually will not make both

distributions exponential, so this transformation can be useless to us. Fortunately, we

can assume that the perfect items will never fail during bum-in and during the required

service period, i.e., semiconductors exhibit infant mortality but not wear out. This kind

of 'no wear out' property of semiconductors is pointed out in several papers: Holcomb

and North (1985); Lawrence (1966); Blakemore, Kronson and von Alven (1963);

Noris (1963); von Alven (1962); and von Alven and Blakemore (1961). Hence, in this

study, the life time distributions of the defective items will be assumed known

exponential with parameter (mean time to failure) 1 and the perfect items will be

assumed to never fail, i.e., the mean time to failure of the perfect items is infinite.

A,.
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§ 1.3 Burn-In: the Approach to Achieve Reliability Goal

The cost to any manufacturer of giving its customers a free two-year service

warranty can be minimized, if all the parts and components used to build his machines

are all good items based on the previous section's discussion. However, no

- manufacturer can guarantee that any product from its production lines is always perfect.

(As given in the previous section, the percentage of the defective items ranges from 2%II to 25%.) Most manufactures admit that some portion of their products are not perfect.

-. To reduce the number of defective items from a production line to a tolerable limit, we
-"may try to improve the design of product, or use production process control, or do

some after production inspection (Ricker 1978, or Jensen and Peterson 1982). In thisK research, only after production inspection is considered and three without replacement

procedures are developed to eliminate some of the defective items and to reduce the

number of defective items to an acceptable ievel. These three procedures require all the

items of the production lot to be put on test (with stress) to remove the defective items

through failure. This kind of test for electronic components is often called bum-in.

In this research, the purpose of bum-in is to achieve the reliability goal, given in §

S.1, that is:

A very high probability, say a, is guaranteed srauch that any
.t'%-

. component which has survived burn-in will have q pre-specified chance,

say p, to survive longer than its required service period. (1.3.1)

7;- That is at most some fixed small proportion of the tested production lot could remain

--" defective after the bum-in test is completed. Equation (1.3.1) will be formalized in the

?-". next section.

W.l -_
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As pointed out before, the defective items tend to fail during their early lives, infant

mortality. That is: the failure rate is decreased as burn-in goes on. So, burn-in can be

used to eliminate the defective items effectively. Although, we don't want to put the

defective items into the assembly line, we also don't want to waste our time and

precious resources on any unnecessary burn-in. A very good discussion about the

reasoning for considering burn-in is presented in Foster (1976). In addition, an

excellent paper discussing all aspects of burn-in is Kuo and Kuo (1983).

N,
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§ 1.4 Modeling

How can we be guaranteed that the desired reliability goal (1.3.1) is achieved after

burn-in? For any production lot of semiconductors, the proportion of the defective

items in this lot is unknown to us. We should try to reduce this proportion to an

acceptable level. Here, burn-in is used to accomplish this. How can we say that this

goal is obtained through burn-in? First, let's establish our mathematical model for the

0reliability goal (1.3.1).

First of all, we have the following notations:

r.. m: the number of the defective items in a given bum-in lot when this lot is to be

tested.

n: the size of burn-in lot or the total number of items being put on test.

t: the required service period (i.e., two years free service warranty period) of any

items which passed burn-in.

T: duration of burn-in.

, JT: thie number of failed defective items during a bum-in test with period T.

p: the pre-specified level of chance that any randomly chosen item which has

passed bum-in would be able to have a useful service period t, i.e., the

minimum iequired reliability for items which survive bum-in.

c: the desired minimum confidence level with which we assert that the reliability of

those items which survive bum-in exceeds p.
S. F(s): the cumulative distribution function of the life time distribution of the defective

items. Here, we assume F(s) = 1 - exp(-s) for s from 0 to ,,

.

0 r.
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So, the reliability goal (1.3.1) can be formulated as

P(l-((m-JT)/(n-JT))(l-exp(-t)) > P ) a1  (I.4.1)

where m-JT is the number of defective items left after burning-in is completed and

- "which is still unknown after the test; n-Jr is the number of items, defective and perfect

items, which are still useful after burning-in; and 1-exp(-t) is the chance that a passed

defective item will fail before completing another t hours of service. Hence, (m-J)/(n-

JT) is the conditional chance that any randomly chosen passed bum-in item is a

defective one and 1 - ((m-JT)/(ri--!T))(l-exp(-t)) is the chance that any item, which has

passed a bum-in test with duration T, can complete a service with period t, i.e., the

reliability of a randomly chosen item which has survived bum-in is

- R(t; T, in, n) = 1 - ((m-JT)/(n-JT))(-exp(-t)). (1.4.2)

Notes:

1. Here, JT is random and T can be a fixed value or given by the stopping rule used.

2. R(t; T, m, n) I - ((M-JT)/(n-JT))(1-exp(-t)) (1.4.3)

R(t; T, m, n) p

<=> JT> (m(1-exp(-t))-n(l-r))/(r -exp(-t))

S' <=> JT 2 mO, (1.4.4)

-' where

- .,,, mO = [mo*] if mo* = [nio*J or mo = [mo*]+l if mo* > [mo*] and

m* = (m(l-exp(-t))-n(l-p))/(p -exp(-t)). (1.4.5)

" (Note: Define [x] as the greatest integer less than or equal to x.)
0."

3. P( 1 - ((rn-JT)/(n-JT))(1-exp(-t)) p ) a

< c=> P( JT >M 0)>. (1.4.6)

p-,
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Therefore, the reliability goal (1.4.1) is achieved if the probability of eliminating at

least mo defective items through bum-in is at least o.

"- 4. The number of the defective items, m, in a bum-in lot is unknown, so mo is

unknown. A reasonable value of m or its estimator can be used to develop the

N.t bum-in procedures.

5. Both mo* and mo are non-decreasing functions of m. If the assumed value of m

is larger than its true value, then a conservative rule is obtained.

6. If t = mo* = (m-n(1-r))/p. This is the case that the desired service period of

any passed bum-in item is infinite.

7. Rewriting (1.4.4), we have

JT -> mo

rn-mo<=> M -J w m0, (1.4.7)

2.> where m - JT is the number of the defective items passing burn-in. So, the

.>2. reliability goal (1.4.1) can be obtained, if a conservative upper bound, say p., for

Sm -JT is given. That is to find a stopping rule such that

P( M -JT ) Xa. (1.4.8)

Marcus and Blumenthal (1974) develop a very good screening procedure to

ensure (1.4.8). Their idea will be investigated further in chapter 2.

- - - - - - -

'.4_"
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§ 1.5 Existing Non-Replacement Burn-In Procedures

There are many bum-in procedures existing in the literature. For any item which

failed during bum-in, some of these procedures do not replace this item with an un-

tes'id item, while some of them do. The three burn-in procedures developed in this

research are all non-replacement procedures. Hence, let's only look at the existing non-

replacement bum-in procedures. Since the with-replacement procedures are not our

focus, they will not be discussed here. From now on, the bum-in procedures will be

the procedures without replacement.

Basically, the burn-in procedures can be classified into the following two

categories: (1) Sequential Procedure: Marcus and Blumenthal (1974); (2) Fixed Time

Procedure: Lawrence (1966), Washburn (1970), and Watson and Wells (1961).

Let's look at the results that these procedures obtained:

(a) Marcus and Blumenthal (1974): A sequential screening procedure is obtained

such that the remaining number of defective items is less than some pre-

specified number with, at least, a desired probability.

- (b) Lawrence (1966): Sharp upper and lower bounds on the bum-in time to achieve

a desired mean residual life are obtained.

(c) Washburn (1970): A mathematical model is established based on cost

considerations. Moreover, the optimal bum-in time is derived to achieve the

maximum performance of this model under total cost constraint.

(d) Watson and Wells (1961): the lower bound of the probability that the mean

remaininE life is areater than some specified lower bound is obtained.

%--..'-
O, s ~,N 4tUt~ t-a
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V From the above discussion, we know that, except for Marcus and Blumenthal

(1974), none of the above procedures can be used to achieve our reliability goal

(1.4.1). In order to achieve (1.4.1), three bum-in procedures are proposed here as

mentioned before. Among these three procedures, one of them is based on Marcus and

Blumentfhal(1974). If we compare the inequality (1.4.7) in the previous section and the

inequality (2.1) of their paper, we see that they are the same. This is a very good

starting point.

p."
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§ 1.6 The Ideas of the Three Procedures Developed in This Research

If m, the number of the defective items, is known, then there is no difficulty for us
to obtain (1.4.1) by never stopping bum-in until the mo-th failed defective item is

.: observed. However, m is unknown. An assumed value of m can be used to design a

*s-." bum-in procedure to achieve (1.4.1): Procedure 0 and Procedure I are derived throughN_,,-..1

this approach. Alternatively, a statistical estimator of m can also be used to design such

a bum-in procedure: Procedure 1is developed through this approach.

If an assumed value of m is used, we can find a bum-in length, say C) such that the

probability that the life time of the mo-th failed defective item are less than a is at least a

and a is the duration of bum-in. This is the idea of Procedure 0. Or, wc can find a

value, say t* and calculate the waiting times between successive failures of the defective

items such that the probability of the first mo waiting times are all less than t* is at least

a. Burn-in continues until some waiting time exceeds t*. Hence, the chance of

eliminating at least mo defective items through bum-in is at least cc. This the idea of

Procedure I. Why does this work for Procedure I? The reason is that the waiting time

,,.. between the ith and i+lst failure of the defective items is stochastically less than the

V waiting time between the i+l st and the i+2nd failure of the defective items.

If the maximum likelihood estimator of m, me t JT/(1-exp(-T)) (Johnson 1961),

is used to replace m in (1.4.2), We have

1- ((mSt-JT)/(n-JT))( 1-cxp(-t)) p (I.6.1)

<=> 1 - JT(1/(1-exp(-T) - 1)(1-exp(-t))/(n-JT) t p

<=> T ! In{[.fT/(n-JT)[(1-exp(-T))/(1-k)I + 11. (1.6.2)

. ..
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A sequence of stopping times can be obtained by using (1.6.2). This is the idea of
* Procedure II.
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. . CHAPTER I

PROCEDURE 0

§1.1 Introduction

q.'-- Any electronic component fr'om a production lot can be a good one or a defective

,< one. The lifetime distribution of any normal one is assumed known and longer than its

,: useful period. The life time of any defective one is assumed continuous and to have the

- same distribution as the other uefectives. Here, we assume that the lifetime distribution

S.

ii of the defectives in any burm-in lot is known, and that the lifetimes are independent. In

2. this case, we can assume that they are independent exponential random variables with

;'.: parameter X. equal to 1.

p'

i - When a randomly chosen item is selected from a production line, we don't know if
!! it can survive for a given time period. In order to ensure that this item has good per-

formance with a desired level of probability, it is often the case that each production lot

is put on bum-in to eliminate some of its defectives.

usefulA brief summary of this chapter is the following: Section Two is the basic idea for

0

"• 13
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be used in the later chapters. A traditional large sample approach to obtain D is given in

0Section Three. The relation between a and several important parameters, like the size of

the defective items m, is discussed in Section Four. A numerical computation algorithm

for D is presented in Section Five and a theorem to show how this algorithm works is

given in Section Six. Under the condition that n/n is a constant, the relation between a

and m is discussed in Sec tion Seven. Additional relations between D and m is consid-

ered in Section Eight, too. The number of the defective items which may left after this

screening procedure is stopped is consider in Section Nine. In the last section, the ex-

pected reliability is computed if this stopping rule is used.

00:

V".



§ 1.2 Idea and the Stopping Rule 0

For a given burn-in lot, assume m is the total number of defective items in a burn-

in lot of size n. Our goal is to find the stopping rules which can ensure that the chance

is at least p that any randomly picked item from this lot will survive for a period t after a

burn-in with period D and our confidence in this chance is at least cc. Formulating this,

we have

P( R(t; D, m, n) p )_a

where R(t; D, m, n)=l-{ ([n-JD)/(n-JD)}-P(T _ D+t IT _ D), D is the duration of burn-

in, and JD is the number of defectives that failed during bum-in up to time D.

To ensure P( R(t; D, m, n) Z! p ) c c, the following lemma tells us the number of

defectives in the bum-in lot which must be eliminated through burn-in when all the in-

formation about this lot is available.

Lemma 1.2.1

For 0< exp(-t) <p < 1, t>0, D >0 and 0 <m<n,

R(t; D, m, n) >_ p) (1.2.1)

can be ensured by screening out at least m0 defectives from this bum-in lot,

no* = {m(1-exp(-t)) - n(1-p)]/(p-exp(-t)) and (1.2.2)

mo the smallest integer greater than or equal mo*. (1.2.3)

,.. -.. ,Proof:

R(t: D, ri, n) 1 - [(m-J1))/(n-JD)I-P(T:t+DlTh-D)
=- 1- [(rn-J[D)/(n-JD)].[ 1-exp(-t)].

So, R(t, D, m, n)_ p

%."vz,
0 .- . • . ,•. . -, , - ' ,-" ' - -- ' ."' .- - ,,."'€ :"'-, ,-- - -.- - .. c ... .....
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m -,5,<=> (rm-JD).(1exp(-t))!_ (1-p).(n-J D)

<=> rn.(1-exp(-t)) - n.(l-p) S JD'(p-exp(-t)) (1.2.4)

<=> JD - m(1-exp(-t)) - n(1-p))/(p-exp(-t)) = mo*, since p > exp(-t).

<=> JD o-10.

The proof of this lemma is completed.

Using this lemma, we have the following very useful lemma.

Lemma 1.2.2

k For p > 0, ox > 0, t > 0 and integers n > m _ 0, to obtain our reliability goal

R(t; D, m, n) _ p, burn-in is required and useful if and only if

*:%.(n-i) _> m > 1 + (n-1)-(l-p)/(1-exp(-t)). (1.2.5)

Note:

The inequality (1.2.5) tells us if bum-in is useful then

1 > m/n > (1-p)/(1-exp(-t)) if p > exp(-t)). (1.2.6)

So, when p > exp(-t)), no burn-in is required if m/n < (1-p)/(1-exp(-t)). From now on,

,. to simplify our calculation, we will say that

* ... bum-in is useful and required if (1.2.6) is satisfied. In addition, the stopping rule ob-

- tained under (1.2.6) is more conservative than the stopping rule under (1.2.5).

Proof:

If in=n then bum-in will not be able to improve the reliability, since the only items left

after bum-in are always defective. So, bum-in is required only when m < n- 1. In addi-

tion, from (1.2.4) of the above lemma, we know that burn-in is needed and our

reliability goal is achieved if and only if, for some for some JD with m - JD :2 1,

m.(1-exp(-t)) - n.(1-p) _ JD°(p-exp(-t)). (1.2.7)

<=> ri.(1-exp(-t)) (n - JD)'(-P) + JD'(1-exp(-t))

%!,
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owe o for some JD with m 2t JD > 1.

<=> m.(1-exp(-t)) (n - 1).(l-p) + 1.(1-exp(-t))- this is the case that JD = 1

<=> n 1 + (n-1)o(1-p)/(1-exp(-t)). The proof of this theorem is completed.

Define

r= m/n

SmO* = mo*/m I [1-exp(-t)] - (1/r).(1-p)j/(p-exp(-t)),

Smo mo/m and

S(n-l)o = (n-1)o/(n-1) where (n-1)o is mo when m -n-1.

Note:

It's trivial that 0 r < 1.

When p > exp(-t) and 0 < r < 1, 1 > smo* > 0, if and only if

."; "-" 1I > r > (1-p)/(1-exp(-t)).(1.)

This is the same as (1.2.6), the condition for burn-in.

We have smo - Smo* (where "A - B" means that A is approximately cqual to B)

and S(n-l)o is the largest possible sm0. This ratio smo is always greater than 0 when

the production lot is required to be tested. In addiion, Smo < S(n-1)o < 1 (and S(n.1)o -US:o, = (l/r-1).(1-p)/(p-exp(-:)) > 0), so the burn-in procedure using a stopping rule

- based on this idea will terminate with probability one and (1.2.1) will be achieved. !n

addition, sno Smo* is an increasing function in r which is an unknown constant and

depends on m where rn is unknown.We'd like to use some estimate of m, say the upper

, (lower) bound of m. If r is more (less) than the true r, then mo/rn or mo will be more

(ess) than its true value. Hence, in the true case, P(R(t; D, m, n) > p) is always more

--..- "2."
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(less) than a if the stopping rule is chosen so that P(R(t; D, m, n) > p) t is true

with m replaced by its upper (lower) bound. So, we have the following lemma.

-.::, Lemma 1.2.3:

If the assumed number of defectives, m, is more (less) than its true value in a bum-in

-- lot then a larger (smaller) portion of defective items than necessary will be eliminated

through bum-in. In addition, the duration of bum-in will be longer (shorter) than is

truly needed.

Let's use the above result to define the Stopping Rule 0.0:

F Stop burn-in when the total number of the observed failed defectives

reaches m0. (S.1.1)

As described before, m is not clearly known in the real situation. This rule needs

some modification. (Note: Stopping rule (S.1.1) assures P(R;t,D,m) _ p) = 1.) Some-V, %times an upper bound or(and) a lower bound of m is available. Sometimes the prior

distribution of m is known. Suppose this stopping rule is used with m replaced by an

estimate of the upper bound then we might wait forever before the screening procedure

is stopped simply because the number mo used is larger than the true value of m (i.e.

the number of defectives in this production lot is over-estimated).
0

For the case of interest to us, the lifetime distributions of defectives are indepen-

dent, identical and known. Our reliability goal, to screen out at least mo defectives with

acceptable high probability, can be achieved by never stopping burn-in before some

fixed duration of burn-in, say d. Let D be the duration of burn-in. We have the

following revised Stopping Rule 0.1:

0'
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Stop burn-in at the First Time When D > 2, (S.1.2)

where a is the lower bound of the duration of bum-in which will ensure P( JD mo!D

- J

,-V

.%

'

p-

. .

>'.-

o0,
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§1.3 The Determination of a: a Large Sample Theory Approximation

• "-. ~How is 0 determined? This is the topic of this section and §1.5. To screen out
pSm0

= mo/n proportion of defectives from bur-in, we may try to use 3 = F-1 (mo/rn)

where F is the cumulative distribution function of the failure time of the defective items.

But this is often not the right choice for us to guarantee that we will have P(R(t; D, m,

n) >_ p) ax when this stopping rule is used. As we may assume that an upper bound of

n is the true m in the previous section, we'll assume that we know m in deriving D.

More discussions about the relation between A (=F(0)) and m ( and other parameters)

will be given in the next section.

P.1'

V, Let Ti be the failure time of the ith failed defective and A = 1-exp(-D). We have the

'7 following equivalent inequalities:

P(R(t; D=-, m, n) p) a (1.3.1)

<=> P( J0 > ma ) a

<=> P(Tmo 0 ) a (1.3.2)

<=> P(Um0  A) Lt (1.3.3)

! where Urno = - exp(-Tmo). Hence, to ensure (1.3.1), we need to find a D in (1.3.2)

or a A ir (1.3.3) which will make these inequalities hold.
$

We have

:-, P(UmIJ A ) =fO<u<A [m!/[(mo -l)!(m-mo)JI u(mO-1 )-(l -u)(m- m°) du
:... =Yi=mio,m~m?/[(m-i)!i!)) Ai (l-A) m -i  (1.3.4)

This is an incomplete beta integral, or a partial binomial sum. For a given ax, we need

-C A w, ith P(U1 0  A ) A c4. This can be fouind by using the existing tables of the

0%
0,. +

---------------------------------------------
b:------------------------------
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binomial distributions (when m is of small or moderate size). A binomial distribution

table may not be at hand or it may not cover all the values of our interest. Can we do

something other than this? Traditionally, we use a normal approximation and large

sample theory to approximate A. In this section, we'll consider this approach first. In

addition to this, in § 1.5, a direct computation scheme to calculate A will be developed.

Let's try to obtain an approximated A for

P(Umo<A ) a (1.3.5)

by using the large sample theory of order statistics (e.g. Cramer 1945 or Smirnov

1962). We have

.. "- { (Umo -Smo) /i[Smo(l-smo)] N > N(0,1), if 0< smo<l, (1.3.6)

where Smo = mo/m.

Using (1.3.6), A can be approximated easily as the following, where za is the 100-a

percentile from N(0,1). Letting

\-lTi { (A -smo) / [sm(-Smo)] } = zX, (1.3.7)

and solving it for A, we have

A Smo + ZoC 4[Smo(1-smo)] / m. (1.3.8)

In addition, assuming smo->so as m ->,-, we haveS
so = [I -exp(-t)]/[p-exp(-t)]-( l/r).[(l-p) /(p-exp(-t)] =Smo.

Using Slutsky's Theorem,

vfm. { (Um0-So) /,[so(l-s 0 )] } --- > N(0,1), ifO<so<l. (1.3.9)

Similarly, we have

A = O + za '[so(l-sO) I hm. (1.3.10)

So, a can be, by using (1.3.8),

Si

, >
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= -In( 1- Smo - zCE ,[Sm(l-smo)] / Nm) (1.3.11)

or, by using (1.3.10),

D = -In( 1 - so -zCC [so(1-so)] / m) (1.3.12)

Hence, we have the following theorem.

Theorem 1.3.1

When the assumed m is large enough ( 25) and r=n/n, the fixed bum-in duration of

this stopping rule, (S.1.1), is equation (1.3.11) or (1.3.12).

-- =

S

I,

-0

a i.. ' p~
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§ 1.4.1 How pand in Affect A (or D)

We can .ee if m is overestimated then the duration of bumn-in could be much longer

than what is truly required. In the previous section, A is expressed as the sum of two

terms: Smo ( or so ) and za<N[smo(l-smo)1 Iqm (or z&J4[so(1 -so)] / qm)

For smo (or so we have defined

SO MO* {- r(1-exp(-t))-( i-p) )/{ r(p-exp(-t)))

= {(1-exp(-t))I(p-exp(-t)) I - ((1 -p)/[r(p-exp(-t))]1j (1.4.1)

By Lemma 1.2.3, smo* (or so) is a monotonically increasing function of r. In addition,

Ss m*= So = (1/r) - [(l-exp(-t))(1-r)]/[r(p-exp(-t)] (1.4.2)

- is a monotonically increasing function of p, too.

For the second term, zcc/[smolbSmo)] / 4m ( or % Cls0 (1-s0 )] / 'm) its value is

mainly determined by 'di. This term is not very significant in the determination of A if

m is large enough.

Hence, the value of A is mainly determined by sino (or so) if m is large enough.

The two figures in the next page can give us the idea about the relation between smo (or

so ) and A, and the relation between smo (or so and a when m is sufficiently large, and

and t ar ixed.

From the two figures in the next page, we can see that the duration of burn-in

Could be extremely long when Smo (or so ) is quite close to 1. This tells us that when

thle 5r11) (or so) used is over-estimated we should be very careful, otherwise we will
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waste a large amount of time in extra bum-in. On the other hand, if Sm0 (or so ) is

under-estimated, the reliability goal P(R(t; D, m, n) _> p) >_ a may not be achieved. In

reliability context, p is usually very close to 1. This will force Smo (or SO ) close to 1,

too. Hence, we should be very careful when this (fixed time) stopping rule is used.

A

I 0

.-- 0 _ Pv SO 0 -P SO
-exp(-t) 1-exp(-t)

Figure 1 Figure 2

.N

'.Z.-

%*, - '
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§1.5 The Determination of a: a Direct Numerical Calculation

Those a's and A's derived in §1.3 are not appropriate for us to use if any one of

the following occur: n, the lot size, is too small; m, the number of the defective items in

the bum-in lot, is bounded above by a small number, or an accurate value of a (or A) is

required. We should use the A by solving (1.3.5) directly if no suitable table of

binomial distributions is available, i.e., to solve equation (1.3.5), P(Umo A ) = a,

numerically.

If we define

h(A) = P(Umo <A) = Yi=mo,mtm!/[(m-i)!i!)I)Ai (1-A)m - i. (1.5.1)

The following lemma is clear to us.

Lemma 1.5.1:

For A in (0,1), h(A) is a differentiable function with a positive and bounded derivative

in A, i.e., h(A) is bounded, continuous and monotonically increasing in A. Note that

h(A) is a one-one function from [0,11 to [0,1].

Proof:

We can consider h(A) as the c.d.f, of a uniform order statistic.

h'(A) is a p.d.f. of a beta distribution with parameters cx=mo and I3-m-mo+l being

positive integers. So, the proof of this lemma is trivial.

Hence, we have the following binary search to find the unique A with h(A)=z.

A binary search to find the solution of h(A)=a,

1) A0=0.5.

,'." ~yt-tt~>:. ..... ... A..&.................... . . .. .,.,--.. ;- ..
r.,.. ...- .... ., . ., , ". ." , . ... .... . .. . .. , ...t, . . -. . -. . .. ... . . .-. ,.., , .;



C'-

26

2) Ail=Ai+(0.5)i+ l if h(Ai) <co.

Ai+,=Ai-(0.5)i+ l if h(A) > a.

Ai+=A i if h(Ai) a.

3) Stop if IAi+l-Aji5e where e is the given error bound.

After 30 iterations, we shall have IA,+1-A< 10-9, the A value derived through this algo-

rithm which is close to its true value with error less than 10-9. We'll obtain the corre-

sponding D by letting D=-ln(1-exp(-A)). The following theorem and its corollary show

that the A derived through this binary search converges to the solution of (1.5.1) -a.

Theorem 1.5.2:

If h(A) is a differentiable function with a bounded positive derivative for A in (0,1),
... . then the search algorithm defined in above converges to the A with h(A) = a.

Proof:

For any two positive integer j > i > 0, we have
"-',,., 0 < lAj - Ail < (1/2)i.(1.2

In addition,

0 _< limit i _> IAj - Ail < limit i -> , (1/2)i = 0.

Hence, {Ai)i=l,,, is a convergent Cauchy sequence which implies that it's a

convergent sequence. So, let limiti >,Ai= A*.

Assume, for A in (0,1), Ih'(A)l !5 K2 <*.

"limiti -> o Ih(Aj) - h(Ai) < limiti -> maxAi Aj Ih'(A)IIAj - Ail

< Q. limit i -> ",IAj - Ail = 0. So, (h(Ai)} is convergent.

The last step is to show that limiti.>. h(Ai) = h(A*) = Cx.

Since h(A) is continuous, so limiti_> h(A i ) = h(A*).
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Suppose h(A*) t a. Since h(A) is a one to one mapping from [0,1] onto [0,11 with

bounded first derivative, we know that h(A*) * a cannot happen.

The proof of this theorem is completed.

So, this binary search algorithm can be used to derive the desired A up to any de-

sired precision. Similar binary search algorithms will be used in the other sequential
screen procedures studied in the following chapters.

K

"

Ii'w'".
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§ 1. 6 The A (or a), from the direct numerical calculation, is an

increasing function in m, a and p when n Is Fixed.

Define A(m,ax,p) as the solution of (1.5.1), and h(A) = P(Umo < A)

4.Ti=mO,m(m/[(m-i)!i!)])A
1 (1-A)m-i = a, where ma = the least integer greater than or

equal {m(1-exp(-t)) - n(l-p))/(p-exp(-t)). We have ma (or m0*) is an increasing func-

tion in p. Using (1.5.1) and using the property of order statistics, we have the

following theorem (without proof).

Theorem 1.6.1:
-. 4.

A(rn,a,p) is an increasing function in p.

S.From lemma 1.5.1, we known that h(A) is an increasing function in A. Hence, we

* have the following trivial result.

Theorem 1.6.2:

A(m,oa,p) is an increasing functon in (x.

Before we study the relation between A(m,ax,p) and m, let ml and m2 be two

positive integers with ml < m2, al and a2 be two positive real numbers with al _< ml

and a2 _< m2, and ala and a2o be the smallest integers larger than or equal to al and a2,

respectively. We have the following lemma.

Lemma 1.6.1:

(i) If ml - al m -2 - a2, then ml - alo> m2 - a2o.

(ii) If il - al m2 - a2, then ml -alo rn2 -a2o.

..,.
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Proof:

(i) l.If there is an integer i such that

ml -al > i > m2 - a2,

then we have

ml - al ml - alo-t i > m2-a2 m2 - a2o.

2. if there is an integer i such that

i > ml - al > m2 - a2> i - 1.

OM' then

i >ml -al > m2 -a2>ml -alo m? - a2o = i- 1.

3. Ifml - al = m2 -a2, then ml - alo =m2 -a2o.

1., 2. and 3. prove that (i) is true.

Similarly, we have the following proof for ii).km (ii) 4. If there is an integer i such that

..- . ml - al1 < i:!_<n-2 - a2,

then we have

m2-a2 m2-a2o>i> ml-al ml -alo.

5. If there is an integer i such that

i > m2 - a2> ml - al i- 1.

then

i > m2 - a- > ml - al ! m2 - a2o = ml - alo i - 1.

6. Ifml - al = m2 -a2, then ml - alo a'm2-o.

4., 5. and 6. prove that (ii) is true.

iThe proof of this lemma is completed.

rI ' -'_ . .- . .- °•. . . -. - - -- . ' . 't . t' , . t4 '----t.
- - - '

? t 4 O' ( Q ~y Jt .. . ... f
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Let nil and m2 be two positive integers, ml < m2 defined as before Lemma 1.6.1,

with values less than two integers nI and n2, respectively, and

-- mio* = [mi.(1-exp(-t))-ni.(l-p)] / [p-exp(-t)]

mio = the least integer greater than or equal [mi.(1-exp(-t))-ni.(l-p)] / [p-exp(-t)]

where i=l or 2.

The following corollary of the above Lemma 1.6.1 is very useful in comparing the

duration of burn-in for different production lots in the same or different bum-in

facilities (same n or different n), or in determining the appropriate bum-in lot size under

the time and cost constraints. Applications of Lemma 1.6.1 and Corollary 1.6.1 will be

seen in this procedure and the other procedures.

-..- Corollary 1.6.1:

1) Ifn2=nlandm2>ml,then

m2o* > mlo*, m2o >_ mlo, ml - mlo* > m2 - m2o* and ml - mlo >_ m2 - m2o.

2) If n2 > n1 m2 > ml, ml/ni = m2/n2 = r and r > (1-p)/(1-exp(-t)), then m2o* >

mlo*, m2o > mlo, ml - mlo* < rn2 -m2o* and ml -ml < m2 -m2o.

Note: Using Lemma 1.2,2, r > (1-p)/(1-exp(-t)) means that burn-in is required for this

" ." production lot.

Proof:

Let, for i = 1 and 2, ai = mio* and aio = mio.

For i= 1,2

n-i-tnio* n ni-[mio(1-exp(-t))-ni(l -p)] /[p-exp(-t)].
S.

1) We only need to prove that nil - mlo* > m2 - m2o*, the other results are trivial,

(ml-mlo*) - (m2-m2o*), since nl=n2,

""' = { -mli [( i -p)i(p-exp(-t))] }-{ -m2o[( 1 -p)i(p-exp(-t))]
S,

0=
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= (m2-ml)°[(1-p/(p-exp(-t))] > 0.

2) Similar to 1), we need to prove ml - m l o* < m2 - m20*.

(ml-mlo*) - (m2-m2o*)

= (nm1- m1)-[( 1 -exp( t))/(p-exp(- t))] - (n2-nl) [(1 -p)/(p-exp(-t))]

= (n2-n 1)'ro (1-exp(-t))/( p-exp(-t)) - (n2-n l)o(1 -p)/(p-exp(-t))

= (n2-nl).{r.(l-exp(-t))/( p-exp(-t) - (1-p)/( p-exp(-t))

>0

<=> r > (1-p)/(l-exp(-.).

The proof of this corollary is completed.

N: Note: For n2=nl=n, let ml/n=rl, rn2/n=r2.

1. m2o ! mia if m2 > ml. This corollary clearly gives us the proof of Lemma 1.2.2.

It also tells us that, in the same burn-in facility, more defectives should be screened

out from the bum-in lot with more defectives in it.

2. ml - mlo m2 - m2o if m2 > ml. In the same burn-in facility, the lot with fewer

defectives will be allowed to have more defectives stay in it when burn-in is

stopped.

3. mlo/n = {r(1-exp(-t))-(1-p))/(p-exp(-t)) < {r2-(1-exp(-t))-(l-p)}/(p-exp(-t)) =

m2o*/n if m2 > ml. For two bum-in lots with the same lot size, a larger

proportion of items (defectives or perfect) has to be eliminated through the course

of burn-in from the lot with more defectives.

4. rn 1o*/m1 = (l-exp(-t))/(p-exp(-t))-(1-p)/{rl.(p-exp(-t))) < (1-exp(-t))/(p-exp(-t))

, -(1-p)}/{r2°(p-exp(-t))} = m20*/m2 if m2 > ml. In the same bum-in facility, a

larger portion of defectives must be eliminated through bum-in from the lot with

.
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more defective items in it. The results of 3 and 4 are similar, but they concern

different ratios.

Note: For n2 > nl, let ml/n=rl, m2/n=r2.

1. m 10 m2o if ni 1 < m2. For the lots from the same production line, more

defectives roust be eliminated through bum-in from the lot which has more defectives

at the very beginning of bum-in.

2. ml - mlo <m2 - m2oif ml <m2. This means that, for the lots from the same

r:r production line, more defectives can stay in the bum-in lot, which has more

:.- defectives in it at the beginning of bum-in, when this screen procedure is stopped.

3. ml0*/ml = (1-exp(-t))/(p-exp(-t))-(l-p)}/fro(p-exp(-t))) = r=n2o*/m2 and ml0*/nl

=r-(l-exp(-t))/(p-exp(-t)))-(1-p)/(p-exp(-t)) = m2o*/n2 if m2 > m l. For the

burn-in lots from the same production line, almost the same proportion of

defectives must be eliminated through bum-in regardless of the size of burn-in lot.

For two positive integers 0 < ml < m2, define

h1,(A) = P(Umlo < A) = i=mlo,ml {ml!/[(ml-i)!i!)])Ai (1_A)ml-i and

hmn2(A) = P(UrnoO < A) = Xi=m2o,rn2 m2!/[(m2-i)!i!)] )Ai (1-A)m 2 -i

hml(A(ml,oQ,p)) = a and hm2(A(ml,ct,p)) ax -is in §1.5.

We have the following theorem which clearly tells us the relation between A and m if all

the other parameters are fixed.

Theorem 1.6.3:.%

, For fixed n, cc and p,

A(ml,up) < A(m2,a.p) if ml < m2. (1.6.1)

.'%.
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Proof:

Define g(A) =hm,2(A)/ h..I (A). (1.6.2)

We have

g(A) =c.An2onflo&(l -A)(nl2fll2O)-(m 1 -rn Io), (1.6.3)

where c is the leading coefficient which is positive.

Since g(0)=O, hm2(O) = hmi(0) = 0 and hm2(1) = hmi(1) =1, if we can prove that g(A)

is a strictly increasing function in A for A in [0,I], then we prove hm2(A) < hmi(A) for

A in (0. 1). Thus, this theorem is proved, since h(A) is a strictly increasing function in

A.

~ g'(A)Ic =(mi2o-mlo).Am~o-mlO- 1.(1 A)(m2-m2o)-(ml -mlo) - ((m2-m20)-(ml-mlo) }
0 Am20rn-m10.(1-A)(m2-m_2o)-(mI-m10)-I 164

- n.2-ml-l.(1-A)(nl2-m2o)-(mrl-mlo)- 1. (m2o-mlo).(1-A)-

[(n2-m2o)- (mi-rn 1)1 -A)

>Arn2o-mlo-l.(1-A)(m2-m2o)-(ml-mlo)-1. ((mO-mlo) -(I-A)), (1.6.5)

by uising the first part of Corollary (1.6.1), since

(m2rn~)-(mi-mlo) 0 and mi2o - mlo > 0. So,

-'(A) > 0<=> 0 < A < 1. (1.6.6)

H ence g'(A) is a strictly increasing function in A for A in (0, 1).

The proof of this theorem is completed.

Note: In the same burn-in facility, this theorem can be used to compare the durations

of burn-in for the production lots from different production lines. It tells us that a

Ion ger duration of burn-in is required for the production lot with more defectives in it.

% %



34

§1.7 The Relation between A (D) and rn When rn/n is a Constant.

For any production lot of an electronic component from a production line, the ratio

of the number of defectives over the size of this lot is usually assumed a constant, r,

which is unknown but a suitable value of it is used. In addition, the size of the bum-in

facility, n*, may be given. Therefore, it is very important for us to discuss the relation

-N£ between A and (m,n) pair when m/n is a constant, and to see if we can find a sequence

of appropriate (m,n) pairs with these n's less than n*, n is the least integer greater than

or equal m/r, which will guarantee a relative smaller A if this rule is used. This will be

explained in the following part of this section. The reason for us to study this is that, in

-.' designing a bum-in scheme, we'd like not only to achieve our reliability but also to re-

duce the cost (or duration) of bum-in as much as possible.

If we can prove that A is a monotonic function in m, then we can obtain an appro-

priate m and its corresponding n to fit the time and the bum-in facility constraint

without any difficulty. But, here, A is not a monotonic function of m as in §1.6. For

fixed cc and p, if we plot A(m, ox, p) against m, then we will have a jagged/uneven

curve as in the following figure. In this figure, the circled values stand for the "m"s

with the same mo.

b',1

I'
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Figure 3

U''Let's investigate A(m) A(m,ax,p) analytically. From § 1.5, we know that

A(mn) is the solution of Xirommf(-)i) 1 (l-A)M-i =,a~.(17)

In addition, for any positive integer m and 0 <~ r <1, we have

MO* = (m(I1-exp(-t))-n( 1-p))/(p-exp(-t)) and (1.7.2)

MO = [mo*]+1 if mo*' > [mo*] or mo =mo* if mo* [ mo*]. (1.7.3)

Define n as a function of mn: n(m) = [rn/r] + I if m/r > [m/r] or n(m) =[m/r] if

m/r = [rn/ri.

So, for any positive integer k, we have

~ .~ (rnk)o* = ((m~k).(1-exp(-t))-n(-m~k)*(1-p))/(p-exp(-t))

(- (l1-exp(-t))-n(m).( I-p))/(p-exp(-t)) + k.(( 1-exp(-t))-( 1/r).( I-p))/(p-exp(-t))

-mcd' + k*((1-exp(-t))-(1/r)'(1-p))/(p-exp(-t))

- mo* + k-mo*~/m mo*.(1I~k/m).

* In addition, there is an integer kI t 0 such that, for 0 5 k 5 ki,

(rn+k)o = mo

(rn~klDo = io and

(m+kl1±+1)o mo + 1.
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If ki 1 and (m+kl)o = mo, let's compare the solution of

ot= Yi=mm{m!/[(m-i)!i) }A' (1-A)m-1 (1.7.4)

and the solution of

a = Zi=(m+kl)o,(m+kl){ (m+kl)!/[((m+kl )-i)!i!)] }Ai (1 A)m+k1-i

X-i= i-(m+kl){(m+kl)!/[((l'+kl)-i)!i!)]) Ai (IA)m +kl-i. (1.7.5)

If we let A be the probability of failure, then (1.7.4) is the probability of at least m0

failures in m trials and (1.7.5) is the probability of at least mo failures in m+kl trials. If

both of (1.7.4) and (1.7.5) are equal to ax, it is clear that the solution, A(m), for (1.7.4)

is greater than that of (1.7.5), A(m+k 1).

Similarly, if k1 1 and (m+kl)o = mo+l, let's compare the solution of

a = i=mo,m {m./[(m-i)!i!)] )Ai (1 _A)m-i (1.7.6)

and the solution of

a = Yi=(m+kl)o,(m+kl) ((m+kl)!/[((m+kl)-i)!i!)] Ai (1_A)m+kl-i

= Xi-moO+I,(m+k1)1(n1+k1)!/[((m+k1)-i)!i!)] Ai (lA)m+k1-i. (1.7.7)

-. If kI = 1, using the same argument as the above, we have A(m) < A(m+1). If ki 2,

the relation between A(m) and A(m+1) is not quite clear. Summarizing these results, we

have the following lemma.

-.. Lemma 1.7.1:

If (m+l)o = ma, then A(m) > A(m+l).

If (r+l)o = mo+l, then A(m) < A(m+l).

S. Using Lemma 1.7.1, we can simplify our search for the minimum A(m)'s for all m

n'r. So, this lemma can be used to help us in setting the most economic lot size of the

burn-in facility if an assumed r is used and the maximum possible lot size is given.

Nt .. _ --. An in"
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'- Note: We might be interested in the average duration of bum-in per item rather the

€ duration of bum-in.
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§1.8 Additional Relations between m and the Stopping Time D.

This stopping rule is a fixed time stopping rule which is different from all the other

three (sequential) rules which will be discussed in the following chapters. The possible

available information about m can be used to improve the accuracy of a (or A) as men-

tioned in the above. a (or A) can be derived easily, according to each case presented

below about the available information about m, by following the results mentioned in

§ 1.3 and §1.5.

For an assumed value of m, say me, let rc=me/n. Based on the available informa-0

tion about m, we have

mC*0 = [me( 1 -exp(-t))-n( I -p)]/(p-exp(-t)), and (1.8.1)

smeo=m°c/me=ne*o/me*={[1-exp(-t)] - (lI/re*).(l-p)}/(p-exp(-t)) if me/n=re. (1.8.2)
--. Following (1.3.11), we have

-c = -In( 1- Smo - za ,,[si-e0(1-Smeo)] / \mo) (1.8.3)

As discussed in §1.4, when me is sufficiently large, de mainly depends on smeo.

I lence, if the binary search algorithm, § 1.6, is used in finding A (or D), then A (or a)

mainly depends on m-mo, rather than on m.

As in Lemma 1.2.3 and Theorem 1.6.3, if me is larger than true m, then the dura-

tion of burn-in is longer than what is truly needed, i.e., De > D. This is the case when m

is over-estimated. If me is smaller than true m, then we might not be able to achieve ourS.
reliability goal P(R(t; D=(-, m, n) p) o

.'

• 
-.
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The duration of this stopping rule is D, a fixed constant. Hence the expected dura-

tion of burn-in is D. This is not the same as the duration of the other three stopping

rules, as they are random, which will be seen in the followir.g chapters.

When an estimate of m, me, is used in this stopping rule, the assumed reliability

of a randomly chosen item from an after-bum-in production lot is

P(T 1 <D,T 2 <D ... , Tmeo<)=P(Tmeo<) (1.8.4)

which is at least ax according to equation(1.3.6) and Lemma 1.2.3 if me is at least true

m.

Note: the probability (1.8.4) depends on true m. In this case, when an upper bound of

m is used, a lower bound of this probability, P( Ti < a, T 2 < 8, ... , Tmo < 3 ), is ob-

taimed, since a larger portion of defectives could be eliminated. More accurate value of

this probability can be obtained if more accurate information about m is available.

If M-P(M=mIO) is the prior distribution of m, to achieve P(R(t; D, M, n) !p) _a by

using this screen procedure, we need to find the a with

.4- n.- -((1(1-exp(-t)))!_rr <nP(Tmo < ).P(M=mlO)+P(M<n. {(I-p)/(1-exp(-t))) = a,

or to find the corresponding A=l-exp(-d) with

.- n. ((1-)(1-cxp(-t))) nnP(Umo < A)°P(M=ml)+P(M<n ((1 -p)/(1-exp(-t)) 1) = a.

The left hand side of the above equation is clear to us which is an increasing function in

A with bounded first derivative for A in [0,1]. Hence, the binary search algorithm de-

fined before can be used to find the appropriate A with the desired level of accuracy.

St.,
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§1.9 The Number of Defectives Left after Burn-in

%-- Denote La as the number of defectives left in the burn-in lot when this burn-in

procedure is stopped with duration a. We know that La=m-Ja, the number of defec-

tives left after bum-in, is the number of defectives at the beginning of bum-in minus the

number of defectives been screened out during bum-in. Marcus and Blumenthal (1974)

have a detailed study of P( LD q), where q is the allowed maximum number of defec-

tive left after burn-in being stopped, about the case that m is unknown. Their rule is

*! conservative.

For the case m is given, the probability that the number of defectives left, after

bum-in being stopped, will not exceed 9, for any given 9, is

* ,-" P(LD < Im)

= P(JaDm-q In) (1.9.1)

"j mn.mP(JDjlm). (1.9.2)

To solve this, we have P(Ja=jlm)

=P(Tj < Dim) - P(Tj+ 1  < D1m) (1.9.3)

, =P( Tj < D, Tj+I > 1m) (1.9.4)

= P(Uj < 1-exp(-a), Uj+ 1 > 1-exp(-D) I m) where Ui=l-exp(-Ti) for i=j,j+l (1.9.5)

h4 : {(m!)/[(j- 1)!(m-j- 1)1}, 1-cxp(-O) f-,xp(-O),](uj)-1(1.uj+1)m+ dujduj+1
I.

= {(n!)/[j!(m-j)!] U[1-exp(-d)IJ[exp(-D)]m-J. (1.9.6)

It is a well-known that Ja - binoinial(m,1-exp(-D)). To stop at J0 =j means thatj failed

defectives were observed before a. The probability for the occurrence of any failure

before o is l-exp(-D). Hence the distribution of J, should be binomial. From (1.9.1)

.

.e
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and (1.9.2), we have that P(La < ;Ira) is a partial sum of the above binomial

distribution. This probability can be calculated directly or obtained easily by using a

table of binomial distributions or using normal approximation if m is large enough or

"- P compute it directly as before.

-" If larger m is used as its true value, a conservative rule is used, then, by Lemma

1.2.3. the true value of (1.9.2) will be more than what is calculated.

If m has a prior distribution, say M - P(M=mlO) for m--O, 1,°-,n, then we have

'>..",p(La < q;)

= Y=on P(M=mO).P(J>m- 9 ur)

I m=C.n P(M=mt)-Yj__qmP(Ja=jlm)

m=O.q P(M=m0) + X, m=i+l,n P(M"m)Xfrm- JP(JaJqm) (1.9.7)

Given the prior distribution of m, (1.9.7) is the probability that the total number of de-

fectives left after bum-in will not exceed the specified upper bound.

We can use (1.9.7), let it be ax, and use the binary search algorithm defined before

to find the appropriate D, O=-ln(l-A). This D ensures that with probability cc the number

of defectives remaining will not exceed a given bound, when, M -P(M=m0), the prior

. distribution of m is given.

,7 The expected number of defectives left after bum-in can be derived,too. For the

case m is given, we have

E(Jatm) =m.[1-exp(-)]. (1.9.8)

If M - P(M=mlO), we have

O, %

0€".
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" E(Ja) = __o,n P(M=mIO) E(Jaim). (1.9.9)

- If M - binomial(nr), then
E(Ja) = Y--, n!/[(nMm)!(m!)] (r)m(1-r)n -m. m [1-exp(-a)]. (1.9.10)

This is the expected number of defectives left after bum-in if the number of defectives

has the binomial prior.

k.
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'' §1.10 E(R(t; D=3, m, n))

. \Ve already have

R(t; D-, M, n) = 1 - [(M-Ja)/(n-Ja)].[1-exp(-t)].

' (1.10.1)

.f le nce, if we are given m, then

E{R(t; D---, M=m, n)) = Ff1 - [(m-Ja)/(n-Ja)]-[1-exp(-t)]}

= Xmo_<j<m (1 - [(m-j)/(n-j)][1-exp(-t)])-P(J=jlm) + P(J<mo)

= Y(mo!j_<m [ 1-[(m-j)/(n-j)].[ 1-exp(-t)] }. { (m!)/U! (m-j)!]} [ 1-exp(-3)]J[exp(-a)]m-i

+ P(J<mo). (1.10.2)

C '- This is the expected reliability after a fixed duration of bum-in, a, when m is given. It
..

N., is obtained by summing over all possible reliabilities weighted by their corresponding

probabilities. If m is overestimated, by lemma 1.2.3, this reliability will be more than

-.? what we thought.

1.k

If M - P(M=mlO) for m=0,1,..o,n, then

SE(R(t; D--, M, n))

= =O,n P(M=mlO). E{R(t; D=d, M=m, n)}

- rn-un'' lP(M~ml0)"{ m0<j_<m{-[(m-j)/(n-j))'[ 1-exp(-t)] )' {(m!)/[j ! (m-j)!]1.

r 1-exp(-d)]J-[exp(-)'lm-i + P(J<mo) ).

(1.10.3)

This the expected reliability after burn-in if this stopping rule is used and M -

- ".P( M=m 0).

..
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If we let E{R(t; D=a, M=m, n))=ax in (1.10.2) and solve it for D, this stopping

rule will guarantee E(R(t; D---<, M=m, n))=(or-: )oc,when we kcnow (or overestimate)

the value of m. If we let E(R(t; D=D, M, n))=cz in (1.10.3) and solve it for a, this

stopping rule will guarantee E(R(t; D-Q, M, n))=cx. when the prior distribution of m,

I ~. M - P(M=mO), is given.



CHAPTER II

PROCEDURE I

§2.1 Introduction

The reliability goal P(R(t; D, m, n) >_ p) >_ a can be achieved by screening out

some portion of the defectives from the production lot which is under burn-in as

described in Procedure 0. By considering the waiting time between failures, Wi ,

where

Wi=Ti-Ti.land T0=0, we get the procedure I. Burn-in is never terminated until the

first Wi exceeds some given bound. The screening procedure, Procedure I, is based

on "A Sequential Screening Procedure" by Marcus and Blumenthal in Technometrics

(1974). The goal of their paper is to develop a sequential procedure in order to screen

out the defective items through "burn-in" such that the number of the remaining

defectives under bum-in at the time of stopping is bounded by a given constant with a

pre-specified probability level. This idea will be modified to develop Procedure I. In

addition, the key idea here is that 1/E(Wi) is monotonically increasing with respect to i

or P(Wi < t*) decreases as i is increased for any given positive t*.

The following is a brief summary of the contents of this chapter. Section two is a

description of the stopping rule developed in this chapter and the definition of t*. A

general search algorithm for t* is given in section three and another search algorithm

45
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for the t* defined in Marcus and Blumenthal (1974) is given in section four. Sections
five and six consider the relation between t* and m under two different conditions.

Sections seven, eight and nine discuss the computation schemes to obtain t* based on
N, the different cases about the available information regarding m. The probability

distribution of this stopping rule is given in section ten when the value of m is

known. The expected duration of burn-in is one of the most important criteria to judge
the performance of all the stopping rules developed in this thesis. The computation of

the expected duration of this stopping rule is given in section eleven. The behavior of

the expected duration of this stopping rule is discussed in section thirteen to fifteen
. under several different conditions. The last section is a brief comparison between this

stoppiig rule and the similar rule developed in Marcus and Blumenthal (1974).

IL
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§2.2 The Stopping Rule

Let 0 = To < T1  T2  ... Tm be the ordered sequence of times to failure of

the defective items under bum-in. Let W i = Ti - Ti.1 for i=1,2, .. ,m be the waiting

times between failures of the defective items. Let J (or JD) be the number of failed

defectives observed during bum-in when the duration of bum-in is D.

In order to ensure

R(t; D, m, n) _ p, (2.2.1)

we must have J t mo, where

m0 = the least integer greater than or equal to

(m,(l -exp(-t))-n°(1 -p)1/(p-exp(-t)), (2.2.2)

4. with a pre-specified probability, a , as discussed in lemma 1.2.1. We also hope that

this screening procedure can be stopped as soon as J reaches m0 (when an assumed m

is given). The goal (2.2.1) can be achieved by finding a t* such that

V I < t*, W2 < t*,., Wmo < t* with probability at least a. (2.2.3)

This is the same as to find a t* such that, under the stopping rule described below,

P(R(t; D, m, n) > ) cc.

*i Stopping Rule 1:

Stop burn-in at the time when the first j is reached with W > t*. (S,2.1)

Under this stopping iule, formulating (2.2.3), we have

P( W 1 < t*, W2 < t*,.... Wno<t*)=P(J>mO) a. (2.2.4)

0O-
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Actually, since m is unknown, an appropriate estimate of m is used in evaluating

(2.2.4). The relation between m and t* will be studied in more detail from §2.5 to

§2.9,

Note: In Marcus and Blumenthal (1974), they found the t* to ensure P(m-J< q) a

for some given fixed q when the information about m is assumed to be unavailable.

Here, we try to find the smallest t* with

P(m-J!5m-mO)'a (2.2.5)

when some information about m is available. Inside the parenthesis of (2.2.5), the

right- hand side, m-mo, is their q. In evaluating the above probability, we should be

very careful since the exact value of m is not available. We can derive a lower bound

* of this probability based on the available information about m and guarantee that the

true probability is greater than this lower bound.

9 @
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'. §2.3 A Binary Search Algorithm for t*

Since Ti for i=1,2, ... ,m is an order statistic from a population of size m

(assumed) with standard exponential distribution, it is well-known that W i for

i=1,2, .... m are independent and exponentially distributed with c.d.f.

1- exp( -(m+l-i).w) (2.3.1)

(Pyke (1965) or Sukhatme (1937)). To save the amount of time on bum-in, let's

consider the equality case of (2.2.4) only:

P( W1 < t*, W2 < t*, Wmo < t* ) - (2.3.2)

In addition,

P(W1 <t*, W2<t*,...,Wmo<t*)

= H (- exp(-(m-i+l)ot*))-#.~ 1 <i_<mo

= H( 1 - exp(-i.t*)) (2.3.3)-- I]6 m-m0+l _im

> I - X(exp(-i-t*))
m-mo+1i<m

1 - ( exp(-(m-mo+l).t*) - exp(-(m+l)-t*) I / (1- exp( -t*)) (2.3.4)

.: 1- exp( -(m-mo+l).t* ) / (1 - exp(-t*)) (2.3.5)

All the above formulae are given in Marcus and Blumenthal (1974) as mentioned

before. Expression (2.3.5) is extensively studied by them, as well. Most of their

results can be applied to this screening procedure for the case when no information

about in is available. If the left hand side of (2.3.2) is replaced by (2.3.5), the

solution, t*, of (2.3.2) will guarantee that the number of defectives left after bum-in

will not exceed a given upper bound, q, with probability at least ax under this

*" scquential screening procedure. That is to replace m-mo by which is independent of

-NA
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the unknown m. Note that m-mo is the number of defectives that may remain in the

burn-in lot after burn-in. This is the advantage of their rule. However, any

K-. .information about m, which could be very valuable, is thrown away in this case.

In the evaluation of (2.3.5), Marcus and Blumenthal, had a very complicated

computation scheme. In order to simplify the computation in calculating t*, we need

the following lemma.

Lemma 2.3.1:

Define, for any two positive integers k and n with 1 k < n,

g 1(x)=H-kin (1-exp(i'x)), (2.3.6)

. g2(x)=1I- (exp(-k.x)-exp(-(n+l)x) )/{ l-exp(-x)) and (2.3.7)

g3(x)=l -exp(-k'x)/(l-exp(-x)). (2.3.8)

Here, gl(x) and g2(x) are increasing functions in x with bounded and positive first

derivatives for x in [0,cc). In addition, g3(x) is an increasing function in x with

% bounded and positive first derivative for x in [eco) where e, nonegative, is the

solution of g3(x)=O.

Note: Equations (2.3.3), (2.3.4) and (2.3.5) are the special cases of the equations

,.. (2.3.6), (2.3.7) and (2.3.8), respectively. The t* derived by solving gl(t*)=aX or

. g2(t*)=a can be any number between 0 and o, but the t* derived by solving

g3(t*)=cz is bounded away zero from below. Function g3(x) is nonnegative if x < 6.
N.

The t* solved by using g3 is the most conservative one.

Proof:

0.g 1(x) is the product of some strictly increasing functions in x with bounded and

positive first derivative for x in (0, _c). So, gl(x) is an increasing function in x with

bounded and positive first derivative for x in (0, ,,).

41Z
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g2(x)=1 - ({exp(-k'x)-exp(-(n+ 1).x) )/( 1 -exp(-x))

-1 - Xi;k nexp(-i'x).

So, it is clear to us that g2(x) is a strictly increasing function in x with bounded andI positive first derivative for x in (O,cc).

Similarly, for g3(x), we have lim_.>0 g3(x) = -,c and g3(-,) = 1. In addition,

g3'(x) = {k.exp(-kx)°(1-exp(-x)) + exp(-kx)'exp(-x))/{ 1 - exp(-x)} 2 > 0

for all x 0. Hence, g3(x) is strictly increasing in [0.-) and there is a unique e in

(0,1) such that g3(E) = 0. Moreover, for all x in [,o,), we have g3'(x) (k+l)/{ 1 -

exp(-)1 2 <.

The proof of this lemma is completed.

This lemma implies that (2.3.3), (2.3.4) and (2.3.5) are monotonically

. increasing functions of t*. We have the following corollary.

Corollary 2.3.1

1) Let k=m-mO+l and n=m in gl(t*), we have (2.2.8) is a monotonically increasing

function in t* for t* in (0, c) with a bounded and positive derivative.

2) Let k=m-mo+1 and n=m in g2(t*), we have (2.2.9) is a monotonically increasing

function in t* for t* in (0,,c) with a bounded and positive derivative.

-'P 3) Let k=m-mo+1, we have (2.2.10) is a monotonically increasing function in t* for

t* in (F,-) with a bounded and positive derivative, where S- is defined in Lemma

2.3.1.

It, 4Using the above results, the expressions (2.3.3), (2.3.4) and (2.3.5) are

monotonically increasing functions in t* with ranges in [0,,,], we can easily use a

%*-
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,-, binary search to find t*, as we did in finding A in procedure 0, if we let these

expressions equal ax.

A Binary Search Algorithm for Finding t*:

Let y - exp(-t*) and let expression (2.3.3) ( or (2.3.4), or (2.3.5)) = h(y).

1) Let yl=1/2 .

2) If h(yi) > cc, then yi+l = yi -(1/2)i+l.

If h(y i) < ac, then Yi+1 = Yi + (1/2)i+ l.

If h(y i ) = a ,then Yi+ 1 = Yi.

3) Stop, if lyi+1 - yil < e, where e is a given error bound.

4) Let y*=yi+l and t*=-ln(y*).

After 30 iterations, we will have IY30 y** < 10-9 where y** = exp(-t**) and

t** is the solution of the corresponding equation. In addition, it is clear that the

solution for (2.3.3) is less than that for (2.3.4), and both of them are less than the

solution for (2.3.5). From Theorem 1.2.2, we can prove that the sequences of values

found through this binary search converge to the solutions of the corresponding

equations if we can prove that

h I(y)=lk . (l-y i) and (2.3.9)
h2(y))-yk-ynll }/{ 1-y (2.3.10)

are differentiable with bounded negative derivative for y in (0,1), and

h3(y)=l - yk/(l-y). (2.3.11)

* is differentiable with bounded negative derivatives for y in (0,8-*) where E*=exp(- 8).

This is another corollary of Lemma 2.3. 1.

S.

N
j

,



I ,~
:3:.-

Corollary 2.3.2

Functions hl(y) and h2(y) are differentiable with bounded negative derivatives in

(0,1). In addition, h3(y), for any e in (0,1), is differentiable with a bounded negative

derivative in (O,e). So, by Theorem 1.2.2, we have proved that the above binary

search algorithm in finding t* is convergent to the unique true t*.

r
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§2.4 A Fixed Point Iterative Algorithm to Find the Most Loose Bound

for t*

Mr

g3(t*) cc.

<=> l-exp(-k.t*)/(1-exp(-t*)) = ac.

c=> (1 - oa).(1 - exp(-t*)) = exp(-k-t*)

c=>t* = -ln(l - oc)/k - ln(1 - exp(-t*))/k. (2.4.1)

So, we can also use a fixed point iterative algorithm to find t*, by using (2.4.1) as

described below:VA Fixed Point Iterative Algorithm to Find t* by Using (2.4.1):

0 1) Let to = -{ln(1 - aol/k.

2) Let ti =t o - ln(1 - exp(-ti.1))}/k for i=l,2,...

3) Stop when I ti - tijI e, where e is a prespecified error bound.

4) Let t*-ti.

The two fixed point algorithms in Section 2.7 and Section 2.8 will be used to

compare the duration of bum-in between the case that no information about m is

available (m=n-1) and the case that a smaller upper bound of m is available (m<n-1).

Let g(x)=-ln(1-oc)-ln[l-exp(-x)] for x in (0,,,) and a in (0,1). For any ja t 1, let

h(x)-g(x)/t. The following lemma proves that the above iterative algorithm is

(- .,,,,,ver,-nt.
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Lemma 2.4.1: ( Convergence of a Fixed Point Iterative Algorithm)

For any zt~l and any a in (l-{j/(1.+1)}P,1), the following fixed point iterative

algorithm is convergent:

1) Let x0 = h(0)=-ln(l-cx)/4t.

2) Let xi = h(xi 1) = {-ln(l-x)-ln[I-exp(-xi-j)]}/p. for i=1,2,...
3) Stop when I xi - xi 1 I < e, where e is a prespecified error bound.

4) Let x*=xi.

Proof:

It is trivial that h(x i) > h(xo) for i=0,1,... and h(x) is a continuous and

differentiable function which maps from [x0 ,,o) into [xo,oo). In addition, h'(x) - -

exp(-x) /[1-exp(-x)]I'i. Using Theorem 3.1 (page 90) of Contel & de Boor(1980),

we only need to prove that Ih'(x)l < 1 for all x in [xo,,) if c in (1-({t/(+l)}P, 1).

We have

Ih'(x)l < 1

<=> [exp(-x) /1-exp(-x)] ]/Ip < I

<=> exp(-x) < p4.[1-exp(-x)]
~<=> [l+kf].exp(-x) < let

<=> x > -ln(pt/[l+lp]). (2.4.2)

So, we need xo > -ln([ [I+ .]) to ensure Ih'(x)l < Ifor all x in [x0 ,o).

Moreover, x0 = -ln(l-oc)/x.

Hence, xo > -ln(W[ I +p])

<=> -In(l-c)/t > -In(/[l1 + t])

<=> I1-cc < (Aj/[1+g])4

<=> cx > 1- (l/lik (2.4.3)
In addition, the upper bound of a is 1.

;I
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In addition, the upper bound of a is 1.

The proof of this lemma is completed.

Note: For 4pi, we have a >O.5. We are typically interested in the case that a is

close to 1 in considering P( R(t; D, m, n) >p ) c.. Hence, o0..5 is good enough.

Corollary 2.4.1:

For any m, 0 m n-l, i.t = (n-i) - ma +1, and thu allowable range for a is

1 > a > 1 - { [(n-i)- mu +1]/l+ [(n-i)- m0 +1]}) (n-i) - mo+1 (2.4.4)

In addition, for m0 n-i,

1/2 2 1 -f [(n-l)- mo +1]/(l+ [(n-l)- mo+l]j (n-1)- m0+l (2.4.5)

The equality of (2.4.5) is true only when (n-i) = ma.

The t*'s solved in §2.3 and §2.4 where we assumed that the true value of m is

known or an appropriate estimate of it is used. For solving P( W1 < t*, W2 < t*,

Wno < t* ) = Equation (2.3.3) = a or Equation (2.3.4)=a or Equation (2.3.5)=a,

different m's (estimated sizes of defectives) will produce different t*'s. In the

following sections, we'll study the relationship between t* and m when n is fixed.

Ni
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§ 2.5 The Relation between t* and m When n, a Is Fixed.

' For a fixed n, define t*(a,m) as the solution of (2.3.3) or (2.3.4) or (2.3.5)

where m is the assumed number of defective items. Recall the result of Lemma 1.2.3

in Procedure 0, in order to ensure P(R(t; D, m, n) p) a, we use the (least) upper

..-A.. bound of m, say urn, as the true m, so that a lager portion of defectives must be

eliminated before the screening procedure is stopped and a higher probability, P(R(t;

r D, m, n) p) is obtained. So, we can use the least available upper bound of rn, Urn, as

its true value and solve (2.3.2), by using (2.3.3) or (2.3.4) or (2.3.5), to derive the

corresponding t*(ax,Um)'s. Now, we face a very crucial problem. Do these t*(ax,um)'s

6 truly guarantee P(R(t (oa,Um); D, m, n) p) cz, where m is its true value, if this

screening procedure is used?

Before solving this problem, let ml and m2 be two positive integers, ml < m2,

- with values less than two integers nI and n2, respectively, nl < n2, and let

mio* = [mi,(l-exp(-t))-no(l-p)] / [p-exp(-t)] and (2.5.1)

mio = the least integer greater than or equal

[i,(l-exp(-t))-n-(1-p)] / [p-exp(-t)] (2.5.2)

A here i=l or 2 (as defined in §1.6). The following theorem helps us in solving this

S.problem.

[. . Theorem 2.5.1:

For nl = n2 = n, given a fixed t* > 0 and ml < m2,

P( W I < t*, W2 < t*, Wn1 0 < t*Im=ml )

> P( W 1 < t*, W2 < t*, Wm2o < t*lIm=m2), (2.5.3)

[ . .,,.. . .. ..,
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where W i is the waiting time between the i-lst and the ith failure as defined before

~and

P( W 1 < t*, W 2 < t*, .... Wmio<t*lm=mi ) denote P(WI< t*, W 2 <t*,

Wmio<t*) when the true value of m is mi for i=1,2.

Note: This theorem tells us if the same t* is used for two different burn-in lots with

their sizes of defectives being ml and m2, respectively, in the same burn-in facility

(same n) then the lot with fewer defectives in it will have higher probability to achieve

the reliability goal, P( R(t; D, m, n) >p ) > ox, when this screen procedure is used

with the same t*.

"--. Proof:

N (WI < t*,W 2 < t* , -Wml 0 < t* Im =m l )

I
- T I . )

rn-rn10+1 i m 1

S 1 (1 -exp(-i.t*))

m-m2o+l<i_<m2

Using Corollary 1.6.1 in Chapter I, we have

(mi -m lo+ l)- (m2-m2o+ 1)

- (rnl-mnlO)-(m2-m2O) > 0, (2.5.4)

since ml m2. This inequality, (2.5.4), implies that

• H (1 - exp(-it*)) < H (1 - exp(-it*)) . (2.5.5)
m2-In2o+1_i<m2 ml-m 10l-1i<In1

This implies that

N W 1 < t*, W2 < t*, ..... W\j2 < t* I e=m2 )

,. P( W1 < t*, W 2 < t*, ... W lo< t* I m=mnl ). (2.5.6)

I lence we complete the proof of this theorem.

1-
0 -
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Based on this theorem, if two estimates of m, ml < m2, and (2.3.3) are used in

deriving t*(m,a) for the same bum-in lot, then the t* corresponding to the smaller

estimate, ml, will have smaller value than the t* corresponding to the larger estimate,

m2. So, we have the folowing corollary. This is a trivial result of (2.5 5).

Corollary 2.5.2:

For n 1 =n2=n, let t*(m,cz) be the solution of
'Im-mo+ 1 i n(1-ep(-it*)) = a. (2.5.7)

If 0 < ml < m2, then r*(ml,a) < t*(m2,z).

This Corollary tells us a conservative rule is used if an upper bound of m is used

as its true value in this screening procedure. Based on (2.3.3), for fixed n , p and a,
t*(m,cx) is a monotonicallv increasing function in m.

Can we have the results similar to corollary 2.3.2, for the t*(m,c)'s based on
A. -'S

(2.3.4) and (2.3.5)? The following two theorems give us the answer.

Theorem 2.5.2

For nl=n2=n, let t*(m,a) be the solution of

1 - { exp(-(rn-mo+l).t*) - exp(-(m+l).t*) } / (1- exp( -t* )) = a. (2.5.8)

• If 0 < ml < m2, then t*(ml,ac) t*(m2,a).
y4,,,,.

Proof:

This is the same as to prove, for any t* > 0 and ml < n2,

*- k 1 - { exp(-(ml-mlo+l).t*) - exp(-(m4l+l).t*) )/(1- exp(-t*)).

""> 1 - { exp(-(m2-n20+1)t*) - exp(-(m2+1).t*) I / (1- exp(-t*)). (2.5.9)

O(
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The above inequality, (2.5.9), is true (since both sides of (2.5.9) are increasing

functions in t* by Lemma 2.3.1)

c=> (exp(-(m1-m1o+1).t*)-exp(-(m1 +1).t*) I <texp(-(m2-m2o+1 ).t*)-exp(-

-, . (rn2+ 1)-t*)1}

<=> l-exp(-m l o.t*)<exp(-( (m2-m2o)-(m 1-m lo)I .t*)-exp(-( (m2-(m 1-m lo)}I.t*)

<=> 1-exp(-mlo.t*) < exp(-[(i2- m2o)-(ml-mlo)}.t*)- 1 - exp(-m2o).t*I (2.5.10)

Using corollary 1.6.1, we have

(ml-m lo)-(m2-m2o) t 0.

This inequality implies that

1 :5 exp(- {(m2- m2o)-(m1-mlo)) }t*). (2.5. 1Oa)

Using corollary 1.6.1 again, we have

mlo m2oor-mlo - 2o.

This implies that

i-exp(-mln).t*) 1 - exp(-m2o). (2.5.1Ob)

--.. Here, (2.5.10) is proved by "multiplying" (2.5.10a) and (2.5.10b). Hence the proof

of this theorem is completed.

Similarly, we have the following theorem. The proof of this theorem is almost

the same as the proof of Theorem 23/"? and even simpler, thus the proof is omitted.

Theorem 2.5.3:

Let t*(m,c) be the solution of

." 1 - exp(-(m-mo+l).t*) / (1- exp( -t* )) "X. (2.5.11)

. If 0 < ml < m2, then t*(ml,ct) < t*(m2,o). Equality holds only whenr- a

ml -m I o= m2-m2o.

!ago&&"
-J. .
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' ,The results of these three theorems may seem a little puzzling at first. If the bum-

in lot size, n, is fixed and the more defective items are in the lot, i.e., the larger m is,

then the waiting times between early failures should be smaller than the corresponding

.ones in the similar lot with fewer defective items. In this occasion, it's pretty natural

for us to guess that P( W1 < t*, W2 < t*, Wm20< t* I m=m2 )P( W 1 < t*,

S.'7'i W2 < t*, Wml0 < t* I m=ml) for a given t* and m2 ml. This contradicts the

result of Theorem 2.5.1 The reason for this is that mo is increased faster than the

increase in m, or a larger portion of defectives must be screened out when the bum-in

7: lot has more defectives in it, since n is fixed. More precisely, as shown in Lemma

1.2.3 in Procedure 0, mo/m is an increasing function of m, a larger (smaller) portion

0 of defectives should be eliminated through bum-in if the proportion of defectives is

larger (smaller) in the burn-in lot. It takes more (less) time to screen out a larger

(snmaller) portion of the defectives. This is the crucial factor which makes Theorem

2.5.1 true.

Note: t* is also an increasing function in ax and p.

-,-U
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§2.6 The relation between m and t* when m/n is fixed.

?". : For any electronic component production lot from a production line, we can

assume that the ratio of the number of defectives to the number from this production

lot is a constant, say r. In this section, we'll study the relation between t* and m when

7: nVn is a constant. This is a very important subject, since it can give us the idea about

the minimum amount of bun-in time t*. It is also very useful in designing the burn-in

facility: how large the bum-in lot-size should be.

When the ratio of the number of the defectives in the burn-in lot over the bum-in

.- lot size, ni/n, is a constant, t*(m,z) is a strictly decreasing function in m (or n) as n

(or n) is increased (if some conditions are satisfied). We'll prove that t*(m,a) s, the

solutions of the equations (2.3.3), (2.3.4) and (2.3.5), have this property in the

following three theorems.

Before stating and proving these theorems, let's define the following relation.

For integers ml, m2. nl and n2 with

0 < ml < m2, 0 < nl < n2, ml < nl, m2 < n2 and ml/nl=m2/n2=r. (2.6.1)

Theorem 2.6.1:

* For any ml, m2, nI and n2, let t*(mi,o), i=1 or 2, be the solution of

Hi-mi-o+ilj_<mi ( I - exp(-(mi+j+l).t*)) = a. (2.6.2)

Ifml, m2, nl, n2 are defined as in (2.6.1), a is in (0,1) and fixed, and for any fixed

'V. t* > 0, the following condition is satisfied

1 -exp(-(m2-m2o+l ).t*). [1 -exp(-m2o.t*)}/( -exp(-t*))

' >{ I -exp(ni I -nm- l+)t*).(-exp(-mlo.t*)/fmlo 1I -exp(-t*)}] }mlo, (2.6.3)
4'"
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then t*(ml, cxr)> tA(n12, a)x

Remark: Denote Wj,mi be the Wjwhen m=mi, then (2.6.3) denotes the following

probability inequality:

1 - P(Wm2o,m2> t*)sP(Wl,mp2 < t*)/P(WM2,rrj2 < t*)

> ( 1 - [P(Wmio,mi > ft).P(WI,Ml < t*flhlP(Wmi,mi ct*).mIj }M10 (2.6.4)

Proof:

Using Corollary 2.3. 1, the monotone property of the left hand side of (2.6.2), to

prove this theorem is the same as to prove, under the hypothesis of this theorem, for

f ixed

w t* > 0,

fli mlml~ ,ml (l-exp(-(m1-j4.1).t*))

< lj=nm2lo,M.2 (1 - exp(-(m2-j+1).t*)). (2.6.5)

To prove (2.6.5), we have to use the fact that arithmetic mean is greater than

geometric mean.

{[X-j~mi-mio+i,mi (1- exp(d(mbj+1)ot*))I/mlO)mlo

>1 1 j=m 1-mIl+,ml (1-exP(-(ml-j+1).t*)). In addition, (2.6.6)

[Xj=nvi-mio-il,mi (1 - exp(-(m1-j+1).t*))]/mlo)mlo

(1 - exp(-(m1-mlo+1)ot*).(l -exp(-mlo-t*))/Lmlo.( 1-exp(-t*))]) M10 (2.6.7)

Using (2.6.2), when mi=m2, we have

rlj'm2-m2o+l,m2 (1-exp(-(m2-i+1).t*))

-Xj=m2-m2o+l,m2 exp(-m2-i.lY.t*)

=1-exp(-(m2-m2o+l1).t*). ( I -exp(.m2o-t*) 1f -exp(-t"')). (2.6.8)

U From (2.6.5), (2.6.6) and (2.6.7), we know that (2.6.3) is true if

I - exp(-(m2-)-m2o+ I).t*). (1 I exp(-m2o-t*) 1/1 1-exp(-r))

> (1-exp(-(mn l-ml o+1 ).t*).(l -exp(-mrn ot*)/[mO{ l - exp(-t*))] }Ml10. (2.6,9)
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The proof of this theorem is now complete.

Theorem 2.6.2:

Let t*(m-i, a ),i=lor 2, be the solution of

1 - {exp(m(mrimio+1).t*) - exp(.(mi+1).t*) )/(1- exp(-t*)) or. (2.6.10)t~E:If nil, m-2, ni, n2 are defined as in (2.6. 10), ac is in (0,1) and fixed, and for any

t* > 0,

(1 - exp(-mlo-t*)}.exp(-(ml-mlo+1).t*)

< (or (1 -exp(wm2o-t*)).exp(-(rnl2rn2o+1).t*) (2.6.11)

then t*(ml, ac) > (or!5 ) t*(m2, a)

- -' Note:

K? can be denoted as
P(Wmi.mio..l'mi < t*)-P(Wmlo'ml) > r*)
> P(Wmn2-m2041,n2 < t*)'P(Wm2o,n.2) > t*)

Proof:

-. We prove this theorem by using the same idea, Corollary 2.2.1, as in proving

60 Theorem 2.6. 1. If we can prove, for fixed t"',

1 - {exp(m(m1-mosl).t*) - exp(-(ml+1)*) )/(I- exp(-t*))

c 1 - fexp(i(m2-m2o+l).t*) - exp'(rm2.I1).t*) )/(l- exp(-t*)), (2.6.12)

* then we have proved this theorem. (The proof of the other case is the same.)

Inequality (2.6.12) is true.

> cxp(-(m2-m20± 1).t*) -exp(-(mi27+1 ).t*).

> exp(-(m2-m2o+ I ).r*-(m 1-rnla+1>-t*-exp(-(nl2+1 b*w(m1 -mlo± l).t*).
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<=> I -exp(-m 1 o.t*)>exp(-[(m2-ni2o)-(m 1-r lo)] -t*)-exp(-((r2-m 1 )+m 1o).t*).
/ :<=>(-exp(-ml o-t*))exp(- [m lI-m lo+lI]t*)>(1 -exp(-m2o-t*.))exp(-[(m2-

m2o)+ 1 ].t*)

The proof of this theorem is now complete.

Theorem 2.6.3:

Let t*(mi, a ), i=lor 2, be the solution of

1 - exp(-(mi-mio+l).t*)/( 1- exp(-t*)) = c. (2.6.14)

If ml, m2, ni, n2 are defined as in (2.6.1) and cc is in (0,1) and fixed, then

t*(ml, cc ) > t*(m2, a).

40 Note: this is the case of the most conservative bound of (2.2.4). The t*(m, t ) in

this case has the desired monotonicity without any additional condition.

a'., Proof:

As the proofs of the previous theorems: using Corollary 2.3.1, we only need to

prove, for a fixed t* > 0,

I - exp(-(ml-mlo+l).t*)/(1- exp(-t*))

1 - exp(-(n2-m2o+1).t*)/(1- exp(-t*)). (2.6.15)

Equation (2.6.15) is true

<-=> exp(-(ml-mlo+1).t*) exp(-(n2m2o+l)et*). (2.6.16)

0 From corollary 1.6.1, we know that

L (m2-m2o)-(m l-mlo) ! 0. (2.6.22)

Hence, (2.6.14) is true. This theorem is completely proved.

-. Note:

I,: When nVn is a constant, from the numerical computation, we know that m-mo is the

LI
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most crucial value in calculating t*. Moreover, from the numerical computation of t*

when (2.3.3) or (2.3.4) or (2.3.5) is used, we have the following theorem.F: Theorem 2.6.4:

Let m l be the smallest positive integer with m0=1. For i=1,2,3,...

If mi+ 1 is the smallest positive integer more than a positive integer with m i-

mio+--mi+ l - mi+ lo,-then

t*(m i,  ) t*(m i , a ) 5 ... t*(mi+l-1, ac ) and t*(mi+l, c ) < t*(mi, aX ),(2.6.23)

when (2.3.3) or (2.3.4) or (2.3.5) is used to solve t*.

Proof:

First, let's consider the case (m+l)o= mo+1, i.e. (m+I)-(m+1)o= m-mo. Using gl,

g2 and g3, which are defined in Lemma 2.3.1 by letting k = m-mo+l and n*=m, we

know that t*(m,a) t*(m+l,x).

For the case that (m+l)o = mo, i.e. (m+l)-(m+l)o= m-mo+1, we will have

t*(m,) > t*(m+l,z), since

1. l+l(+)(mo+ 1,m+1(1-exp(-i-t*))

= H(m+l)-(m+l)o+1,m+l(1-exp(-i't*)) I 1-exp(-(m+l).t*)1/

{ -exp(-(m-mo+ 1 ).t*))

and I I-exp(-(m+ 1)-t*) )/ 1 -exp(-(m-mo+l)-t*) is greater than 1.

2. 1 - Y(m+l)_(m+l)o+1,m+l(-exp(-it*"))

1 - +l,m( 1-exp(-i4t*)) +(exp(-(m-mo+l)-t*) - exp(-(m+l).t*))

> 1 - Y-mmo+lm(1-exp(-i-t*)).L 3. 1 - expf-[(m+l)-(m+l)o+l-t*)/(1-exp(-t*))

O.S = 1 - exp(-[m-mo42].t* )/( -exp(-t*)} 1 - exp(-[m-mo+l].t*)/ l-exp(-t*)}.

ry So, this theorem is proved.
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This theorem tells us how to pick the best (n,m) pair (to ensure the smallest

possible t*) under some cost or lot size constraints. That is, let n* be the available

'14 upper bound of bum-in lot size and m*=[n*.r], the greatest integer in n*.r. If m*o

(m*-l)0, then use t*(m*,cz) as the upper bound on waiting time and n* as the lot size;

otherwise, use the closest n, which is small than n*, with t*Un.r]o,at) < t*(m*,ct).

Note: In some cases, we may be interested in minimizing the cost per item under

test. But, here, we are interested in getting the most suitable local minimum of

t (m, c).

K~i
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§2.7 The value of t* No information about m is available

Consider our reliability function R(t; D, m, n) = 1 - {(m-JD)/(n-JD))(1-exp(-t))
and the probability P(R(t; D, m, n) p) : a. What is the best t* to fit our needs? The

range of m is contained in [0,n-l]. Some information about the upper bound or the

lower bound of m may be available. Here, "m" may have a known prior distribution.

Can we apply the available information about n to get a better t*so that, under this

rule, the duration of bum-in can be shortened and P(R(t; D, m, n) t p) is at least

equal to the value specified? We discuss all of these in this and the following sections.

From Lemma 1.2.2, we know if m:n, burn-in does not improve reliability.

Assume m <5 n-1. In addition, if R(t, D=0, m, n) p, no burn-in is needed, too.

Lemma 1.2.2 also shows that R(t, D=0, m, n) : p, no burn-in is required if p exp(-
t) and in no{(1-p)/(1-exp(-t))}. So, from now on, assume p > exp(-t) and m >

n* { (l-p)/(l-exp(-t)) 1.

If m is close to n or no information about m is available, the safest way to have

R(t;D,m,n) p is to screen out all the defectives during bum-in. This tells us to

replace mo by n-i in (2.3.3), (2.3.4) and (2.3.5). Now, we are going to solve

1l {1 -exp(-i-t*)) x a. (2.7.1)
Iln -{(exp( -t*) -exp( -((n l)+l) -t*)}/( -exp(-t*)) = a, or (2.7.2)

1 exp( t*)/{I lexp( t*)} = c. (2.7.3)

-1a o( 7
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The binary searches algorithms used in this section to solve (2.7.1), (2.7.2) and

(2.7.3) are the same as the binary search defined in § 1.2. When the shortest duration

of burning is required, we'll use the t* by solving (2.7.1). Otherwise,we can use the

t* by solving (2.7.2) or (2.7.3). It is obvious to us that to solve (2.7.1) is much more

complicated than to solve the other two equations. This is one reason why equations

(2.7.2) and (2.7.3) are considered here. Another reason is that an equation like

(2.7.3) had been used extensively in solving t* in Marcus & Blumenthal (1974).

Define

rnon*= n-i- (1-p)/(p-exp(-t)) and

mon= the smallest integer more than or equal n-I- (1-p)/(p-exp(-t)).

In this case, P( R(t: D, n, n) -p ) >a is ensured if we have P( R(t; D, n-1, n) p)

>cx, that is at least mon defectives will be eliminated through bum-in. Equations

(2.3.3), (2.3.4) and (2.3.5) can be rewritten as

FIi=1,m {1 -exp(-i.t*)} = aX . (2.7.4)

1 - {(exp(-((n-1) - mn +1 =t*)-exp(-{(n-1)+l }t*)}/(1-exp(-t*)) =a. (2.7.5)

1-exp( (-(n-i) - mon +1 )-t*)/(1-exp(-t*)) = a. (2.7.6)

The solutions, t*s, of (2.7.4), (2.7.5) and (2.7.6) preserve the same ordering

property for each t* as the corresponding solution to each of (2.3.3), (2.3.4) and

(2.3.5). This means that the solution of (2.7.4) is less than the solution of (2.7.5),
and both of them are less than the solution of (2.7.6). Smaller t* implies shorter

duration of bum-in. In order to save the time of bum-in, we should use the smallest

t* if computation is not a problem.

Fi
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~, ., From Theorem 2.5.1, Theorem 2.5.2, Theorem 2.5.3 and Lemma 1.2.3, we

know that the t* obtained in this section is the most conservative one to ensure P( R(t;

D, m, n) -p ) when m=n-1 is used. In addition, the t* obtained in this section,

when equation (2.7.4) or (2.7.5) is used, is smaller than the corresponding t* in

Marcus and Blumenthal (1974), since they eliminated more terms in evaluating t*. We

keep the lot size, n, as a parameter in calculating t*. More comparisons between their

results and our accomplishments will be given in §2.14.

To derive t*, we can use the binary search algorithm specified in §2.2. For the

solution of equation (2.5.6), we can also use a fixed point iterative algorithm to find

* t* as described in section 2.4:

A Fixed Point Iterative Algorithm to Find t* by Using (2.7.6):

1) Let to = -{In( 1 - ac ))/(n-mon+1).

2) Let ti = to - In( 1 - exp(-tiul))}/(n-mon) for i=1,2,...

3) Stop when I ti - ti 1 I _e, where e is a prespecified error bound.

4) Let t*=ti.

K From Lemma 2.4.1, we know that the sequence {ti) defined by the above

* algorithm converges to the solution of (2.7.6). Moreover, this algorithm and a similar

algorithm in the following section will be used to compare the duration of bum-in

between the case that no information about m is available (r=n- 1) and the case that a

LQ. smaller upper bound of m is available (m<n-l).

4L

"- . . .. . . . . ° -. -. , - , , " " • " e'4" d " -. '. - -' 'N .M , , % * .t " ' =



i

71

§2.8 The value of t - an accurate upper bound of m is given

Suppose m n'B = mg and m/n-r, then 0 5 r B 1. We have

MO - mo*

irn.(l-exp(-t)) - n'(l-p))/(p - exp(-t)}

_, _ {n.13(l-exp(-t)) - n.(l-p)}/{p -exp(-t)) = m3o* - mo. (2.8.1)
*'.." Smo = mo/rn - {r(l-exp(-t))-(1-p)]/{r.(p-exp(-t))) = smo , (2.8.2)

Sm3o* = { 8 .(l-exp(-t))-(1-p) /{r.(p-exp(-t))} = mgo*/m. (2.8.3)
- Trivially, mo* 5 m,3o* and Smo* 5 sm,3o*. We'll expect to eliminate a larger number

and a larger portion of defectives from the bum-in lot than is truly required if an upper
0 bound for m is used as its true value. This is similar to the result of lemma 1.2.3 and

the note oi corollary 1.6.1.

We know that 1 - I (rna-j)/(n-j) }o(l-exp(-t)) p if j mo. So, any j mBo ( mo
) will guarantee 1 - {(m-j)/(n-j)) }(1-exp(-t)) p. In additon, P( J m1o ) _< P( J mo

) = P( R(t; D, m, n) p). To ensure P( R(t; D, m, n) p) a, we can do it by

finding a t* such that P( J m,3o ) a a holds when this screening procedure is used.

To save the amount of bum-in time, we only need to solve for the equality case. This

is the same as to find a t* with

SP( W 1 < ,W 2 <t*, .WmBo < t*)

1 n13-mn3o+lricn.B (1 - exp(-i.t*)) = a. (2.8.4)
We can reduce the amount of computation in finding t* when some of the

'insignificant' terms in (2.8.4) are deleted as in (2.3.4) or (2.3.5), we have

- (exp( -(n.B3-mgo+l).t* ) - exp( -(n.B+l).t* )I/(1-exp(-t*)) = a, or (2.8.5)
.-., - ..,p....(n,m l. t*/(l.exp(-=c) a. (2.8.6)

.,"0
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The value of t*~ can be found by using the binary search described in § 2.2. For

solving (2.8.6) we can use the following fixed point iterative algorithm which is

n. similar to the one in the previous section.

A Fixed Point Iterative Algorithm to Solve t* by Using (2.8.6):

Let to -{ln(1-c}))(n,3 - m1o +-1).

Let ti = to - {ln(l-exp(-ti.l))}/(n'-mO+l) for i=1,2....

Stop when Iti-ti.I I _< e, where e is a prespecified error bound.

Let t*=ti.

O- From Lemma 2.5.2, we know that this algorithm is convergent (by letting

ign-B-nio+l and if x> 1 - {(n.-m3O+l)/ [l+(n.B-mao+1)]1). It is obvious to us

that the to in the above algorithm is the previous to in §2.7 divided by (n-mot+1)/( n°8

-mo + 1 ). So, we can see that the duration of burn-in is reduced if a smaller ( more

accurate) upper bound of m is given.

Using Theorem 2.5,1, Theorem 2.5.2 and Theorem 2.5.3, we have the

following corollary to tell us how to choose t* if a least upper bound of m is

available.

O Corollary 2.8.1:

If the least upper bound of m is available, then the t* derived based on this is smaller

than the t* derived with m=n- 1 (no information about m is available).

So, to save the amount of time in bum-in, use the t* derived by using the least

upper bound of rn if its available. In addition, for the same burn-in lot, this Corollary

ph
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alsc shows that the t* derived in this section is smaller than the t* derived in the

previous section.

To have a more clear idea about the arount of time which is required for bum-in,

we'll study the expected duration of burn-in for the various cases in §2.12 - §2.14

and in §2.15.

V
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§2.9 The value of t* - given the prior distribution of m

Let N! be the number of the defective items in a randomly selected bum-in lot of

size n. Assume that M is distributed as P(M=mlO) , m=O,1,2,o--,n, where 0 can be a

vector parameter. In the previous sections, we let t*(m,L) be the t* obtained by

solving (2.3.3) or (2.:.4) or (2.3.5) when the value of M is m. In this section, we are

trying to determine A hat an appropriate t* could be if the distribution of M,

P(M=mlO), is known.

The Bayes approach for us to solve this problem is to find a t* such that

- P(R(t; D, M, n) p)

V. = E(P(R(t; D, M, n) p) 10

- E P(R(t; D, M, n) pIM--m)oP(M=mO)
Inm= 1 ,n

= E P( J > mo M=m)-P(M=mlO) + P(Mn,((l-p )/(1-exp(-t))}10)
n.{(1-p)/(1-exp(-t))}c rn_%n

= I'. { I-M [ 1-exp(-i-t*)] },P(M=ml0) + P(Min- (1-p)/(1-exp(-t)))10)
n((1-p)/(l-exp(-t))< msn i=m-mO+1,m

_> t. (2.9.1)

The summation of m is started from n,{(1-p)/(1-exp(-t))), since R(t; D, m, n) is

* always greater than or equal to p if no burn-in is required, i.e.

in < n,(1-p)/(l-exp(-t)).

As we replace (2.3.2) by (2.3.4) or (2.3.5) in calculating t*, we are throwing

away sone insignificant terms to simplify the computation and getting an upper

bound on the true t*. Using (2.3.4) and (2.3.5) in (2.9.1) we have

0'
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P(R(t; D, M, n) _p)NI. -r [1-exp(-it*)] )P(M=mlO) + P(M<n(1-p )/(l-exp(-t))}IS)
n((1-p )/(1 -cxp(-t))<Mn i=m-mO+1,M

> m=O,n{ 1 [exp(-(m-mo+1)t*)-exp(-m+)t*)]/[1-exp(-t*)]}-P(M=m)

.-- 1- [ex p(-t*)/( 1 -exp(-t*))] •{Y m=o,n[exp(-(m-mo).t*)-exp(-m)-t*)]_P(M=m) (2.9.2)

We approximate the right side of (2.9.2) by replacing the integer (m-mo) with the

-. non-integer

m-mo*

Sm - [m (1-exp(-t))-n°(1-p)/(p-exp(-t)) = -mo(1-p)/(p-exp(-t)) + n*(1-p)/(p-exp(-t))

- -(c-m + b), where c = (1-p)/(p-exp(-t)) and b = -n-c. (2.9,3)

Using (2.9.3) and letting MGFM(x) be the moment generating function of M, we get

from (2.9.2)

. P(R(t; D, M, n)>p)

S> 1 - [exp(-t*)/(1-exp(-t*))] ' (exp(b.t).MGFM(c-t*) - MGFM(-t*)) (2.9.4)

> 1 - [exp((b-1).t*)/(1-exp(-t*))] - MGFM(c.t*) (2.9.5)

As mentioned in §2.3, setting expressions (2.9.1) or (2.9.4) or (2.9.5) equal to

z, we can solve for t* by a binary search. Using lemma 2.3.1, we know that they are

all monotonically increasing functions in t*. Let x=exp(-t*) and f(x)=the left-hand

side of (2.9.1) (or (2.9.4) or (2.9.5)), then the binary search described in Section 2.3

will give us the right t* up to any level of precision. However, the computation to get

t* is more complicated than the previous two cases when (2.9.!) is used. To avoid

this kind of much longer computation, let's consider some possible alternatives rather

K than using (2.9.4) or (2.9.5).

LA34cr.
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We may screen out all the defectives when p is very close to 1 or M is close to n

as we did in §2.7, if we ignore the prior distribution of m. We might think about

using t* = X t*(m)P(M=m0) = E(t*(M)) and using numerical computation to justify

how it works, but this doesn't clearly express the relation be:..een t* and P(R(t; D,

M, n) p) cz. Let's try to use the 100.13, where B=al/ 2 , percentile of M, mB=

min~m: P(M-<n) j), as our true m and then apply (2.3.3) ( or (2.3.4) or (2.3.5)) to

calculate t*(mP3,). This seems to be a reasonable approach, since P( M ! mP ) > 13>

cx. In this case

P(R(t; D, M, n) _p)

" P(R(t; D, M, n) -pl M mP).P( M _ mP)+ P(R(t; D, M, n)- pM m13)-P(M2m P)

> 3P( M mP ) + P(R(t; D, M, n) plM mP)*P( M mP)

> 132 + P(R(t; D, n, n) >pIM ; mP).P( M m13) t p2 =X. (2.9.6)

Here, P(R(t; D, n, n) p) > a is guaranteed, and t*(mfa) is easier to calculate, so

we could use this t* as a substitute. (Note: P(R(t; D, m, n) pM mP).P( M mP)

- P( M _ inD) _ l-4 a which should be small.)

Usually, we assume that M has a binomial or a Poisson distribution. If an

accurate t* is required to reduce the duration of bum-in, it would be better to solve

(2.9.1) directly by using the binary search algorithm as before. Otherwise, (2.9.4) or

• (2.9.5) or (2.9.6) can be used to find the appropriate t*. The moment generating

function, MGFb, of a binomial distribution function, P(M=m0), is MGFb(s)

(o'exp(s) + 1 - o)n. And, the moment generating, MGFp, of a poisson distribution

function, P(M=m10), is MGFp(s) = exp(0.(exp(s) - 1). If M has a binomial

distribution, then the MGF is an increasing functions in s, so we can use the binary

search to find t* without any hesitation.

3
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77.l~s ~ Note: A numerical table used to compare the results in this section, when M is

binomial, will be given in Appendix I.
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§2.10 Probability of stopping this screening procedure before the j+lst

failure of a defective item is observed after the failure of the

j-th defective item.

The results in this and the following sections are independent of the equation

used to find t* in the previous sections, so the t* here can be any t* (or t*(m,a) in

*the previous sections. Most of the results in this and the next section can be found in

Marcus and Blumenthal (1974). For the sake of completeness, their results are listed

* N;' here.

Define P(J jlm,t*) as the probability of the number (random) of the failed
.7.- defectives up to the time of stopping equals or exceeds j when this sequential

screening scheme with t* is used, and the true number of defectives put on bum-in is

im. We have, as (2.3.2) or (2.3.3), for j = 1,2 ..., m,

P(J jm,t*)

P( W1 < t*, W 2 < t*, ..., Wj < t* IM)

U- -j+ir (1-exp(-i.t*)) forj=1,2,..,m (2.10.1)
i~m j~,m

and P(J Olin,t*) = 1. In addition, for j = 1, 2,

P( J =j Int*)
-. = P(J j I m,t*) -P(J ' j+lm,t*)

S1 (1-exp(-it*)) - II (1-exp(-i-t*))
i=m-j+l ,m i=m-j,m

S= HI (l-exp(-i-t*)) ( 1 - (1-exp(-(m-j)-t*))
i-m-j+l.,m

- exp( Qmj).t*)H (1-exp(-i-t*)) (2.10.2)
i=ni-j+l m

and P(J = Om,t*) - exp( -mt*).

-- .. .
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"Cr §2.11 The expected duration of burn-in.

Clearly, from (2.3.1), the expected ith waiting time between failure E(Wilm) =

1/(mr+l-i), where m is the number of defective items. Denote the expected ith waiting

time between failures given that it does not exceed t* by E( Wi I Wi  t*,m) as in

, Marcus and Blumenthal(1974). We have
" : : E( Wi I Wi _< t*,m)

=f ((m+l-i)'s }.exp(-(m+l-i).s)/(l-exp(-(m+l-i)-t*))ds
- . O Sct*

l/(1-exp( -(m+1-i).t* ))1. (-t*.exp(-(m+1-i).t*) + J exp( -(m+1-i)*s )ds

S1/(-exp(-(m+1-i)-t*))}. -t*.exp(-(m+l-i)ot*) + [1- exp( -(m+li).t* )]/(m+l-i)

= (1/(m+l-i) - { t*-exp( -(m+l-i).t* )/(l-exp(-(m+l-i)et*))

" E(Wi) - t*/[exp((m+l-i)-t*)-l]. (2.11.1)

Let's denote the random duration of burn-in as D. For a given m and t*, we

have, as in Marcus and Blumenthal (1974),

,¢ E( DI m,t* )

=t*+Y P(J=j)XE(WiiW i <t*,m), (2.11.2)
j=O,m i=Oj

S where we let E(W 0) = E( W0 I Wo < t*,m) = 0.

2$ When the assumed m is more than its true value, the t* based on this value is

, larger than what it should be. In this case, E(DIm,t*) is longer than what it should be,

or we will have a longer expected duration.
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If the number of defectives, M, has prior distribution P(M=mlO), then

E(Dlt*)

= Z P(M=ml).E(Dim,t*)
m=o,"

,. = t* + X P(M=mle) Z P(J=j\,m) Z E(,VilW i < t*,m) (2.11.3)
m=O.n j=O.m i=Oj

Equation (2.11.2) or (2.11.3) tells us that a minimum amount of burr-in time,

t*, is required, if this stopping rule is used. In addition, this is obvious from

Stopping Rule (S.2.1).
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- §2.12 E(Dlm,t*) is an increasing function in t* when m (n, pand t )

is fixed.

The main theorem of this section shows that E(DIm,t*) is a strictly increasing

function in t* for fixed m and fixed n (the size of bum-in lot). This theorem can be

used to compare the difference between two expected durations, for a given bum-in

lot, if two different estimates of m are used in obtaining t*. Define
g(m,t*) = E(Dlm,t*) = t* + 1j=omP(Jj .E(WilWi<t*,m), (2.12.1)

we have the following theorem.

Theorem 2.12.1
-t

* Given fixed m and n. for t* in (0,o), g(m,t*) is a strictly increasing function in t*.

Proof:

g(m,t*)= t* + Xj=0,P( J = j Imt*)..ojE( W i I W i < t*,m)

=t*+ +=l1meXp(-(m-j)-t*) lij+,m(1-exp(-i.t*)).Xi=l { 1/(m+ 1-i)-t*/[exp((m+ 1-

i).t*) - 1] }, since W0 =O.

The following lemmas and corollaries show that, for fixed m,

1) For j=0,l,,'-,m, P( J =j Im,t*) skews to the right, as t* is increased. This fact is

U-gettng more significant as j approaches m.

2) For inE( Wi I Wi c tm) is a strictly increasing function in c*.

* 3) For j=O,l,'.°,m, E( Wi  I Wi < t*,m) is a strictly increasing function in t* ,
'.

too.

4) For j=0,1,*.o,m, j=o0nP( J Im,t*)CYi--o,jE( Wi I Wi < t*,m) is increased as t*

increases.

So, we conclude that g(m,t*) is a strictly increasing function in t*.

------------------------------- .-..
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Lemma 2.12.1

Given a fixed m, for t>O, uM) and J' is a rionegative integer less than or equal to in,

as.'define f(t~u~j,m)=P(J=jit,m)JP(Njlu,m).

*If tz~u, then f(r,uu,in) is a strictly inareasing function in j. Thus, P( J j kt*,m) skews

to the large j as t* is increased.

Proof:

For j01..m1

f(t, u,j, Mr)

(e-P( (-j' ) i-mi I1n -exp(-~) / exp (-j).-u).-IT +_j( 1 1-exp(-u)) }

=exp(-(m-j)e(t-u))ofi.j-m(( -exp(-i'Q)I( -exp(-iou)) 1

* f(t,u,j + 1 ,m)=exp(-(in-j- 1 )'(t-u))f. =.j.m jm10 -exp(-i*0))/( 1 -exp(-i-u)))

=exp(t-u). (1 -exp(-(rn-j), t01(1 -exp(-(rn-j)' u))I~~~~~ ((1 -exp(-i-t))/( 1 -exp(-i-u)))

=exp(t-u). ((1 -exp(-(m-j).Q/(1 -exp(-(m-j).u)] I'f(tuj,m).
f(t,uj+ 1I'M) > f(t,u,j,in)

c=> exp(t-u) f(1-exp(-(m-j).)/( l-exp(-(in-j).u) } > 1

c=> exp(t).(l1-exp(-(m-j). t) > exp(u)*(l1-exp(-(m-j).u)

<=> t> U.

- .. *.The proof'of Lemma 2.12.1 is completed.

* Lemma 2.12.2

G ive a fixe , for 1=O,l1, .. M E(vVi I W: t*,m) is astrictly increasing function

in tt.

* Proof:

E( 'NjI Wi c t*,in) =1/(in+l-i) - t*/(exp((in±1-i).t*)-l).

Define h(t) = /(exp(a.-).
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The following proposition shows that h(t), h(t)=t/{exp(a't)-1], is a strictly decreasing

function in t. Let t*=t and m+-i=a in h(t), Lemma 2.12.2 is proved.
p.-.

Proposition:

For t in (0,c) and any a>0, h(t) = t/(exp(a't)-1) is a strictly decreasing function in t.

Proof:

For t in (0,o),

h'(t) = { (exp(a-t)- 1)-t-a-exp(a-t) /(exp(a-t)- 1)2.

h'(t) < 0, is true,

<=> ((exp(a't)- 1)-t-a'exp(a.t)}/(exp(a.t)- 1)2 < 0

<=> exp(a-t)-1-t.a.exp(a.t) < 0

.' <=> I-exp(-a-t)-a~t < 0.

Define hl(t) = 1-exp(-a-t)-a-t. We have h(0)--O and hl(0)=0.

If we can prove that hl(t) is a strictly decreasing function in t for t in (0,o,), we have

hl(t)<0 since hl(0)=0. For t in (0,o), hl(t)<0, implies that h'(t)<O. So, for t in

(0,a), h(t) is a strictly decreasing function in t.

hl'(t) = a-exp(-a t)-a=a.(exp(-t)-1) < 0 if t > 0.

Hence, hI(t) is a strictly decreasing function in t fort > 0.

6 Corollary 2.12.1

For t* in (0,oo), -i__0-. jE( Wi I Wi < t*,m) is a strictly increasing func:ion in t*.

Proof:

U. A linear combination of strictly increasing functions with positive coefficient is strictly

increasing.

0
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% b To prove that F-i=0,mP( J j . Im,t*)Xi~ojE( W1 I Wi < t*,m) is a strictly

increasing function in t*, we need to prove the following lemma.

-: Lemma 2.12.3

For i-01. , assume a(i), b(i), c(i) and d(i) are nonegative real numbers with

1) -Om a(i)=1,

2) YX0 ,m b(i)=1,

3) b(i)/a(i) is increased as i is increased,

4) c(i) and d(i) are monotonically increasing in i,

5) For each i, d(i) > c(i).

Under the above condition, YXjO,,ma(i)-c(i) < YXi= 0 mb(i)ed(i).

S Proof:

Let iLmax1=01._m~i; a(i) b(i)} and iu=mifl. 1 (nai i))

It is clear that 'L:5 i U Moreover, 'L = 'U or iL + 1 iU-

Let dL=d(iO), du =d(iu) and dj=( dL+du )/2.

Using 4), we have d(O)<d(l)<...< dL 5 d:5 du< d(iui)< ...e<d(m). (*

Finally, we have

Xi=Om {a(i)-c(i)-b(i).d(i) I

*~~~ <X-,.O. 11diia(i)-b(i)), by using (*)and( )

-0.

So, Xj=Oma(i)-c(i) < YXj-O,,b(i).d(i). The proof of this lemma is now complete.

* Corollary 2.12.2

For fixed m and n, YXj=O,mP( J j )*Xi~0 ,jE( Wi i < t*,m) is a strictly increasing

function in t*.
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Proof:

For t2*>tl* and j=,1,2,o--,m, define

a(j) = P(J=jlm,tl*),

r1,j b(j) = P(J=jlm,t2*),

d(j) = Y--ijj E(WilWi<tl*,m).

It is trivial that Yj--Om a(j) = Xj-OfM b(j) = 1.

From Corollary 2.12.1, we have d(j) > cj) for j=O,1,---,m and both of them are

strictly increasing function in j.

In addition, Lemma 2.12.1 shows that b(j)/a(j) is increased as j is increased.

* Hence, all the conditions of the above lemma are satisfied, the proof of this corollary

is completed.

Using the above lemmas and corollaries, we have proved Theorem 2.12.1.

In a given burn-in lot, with fixed n, p and a, this theorem shows that the

expected duration of bum-in is longer if the used t* is larger. In addition, for fixed n,.'.

p and ot, we know, in §2.3, that t*(m,a), is a monotonically increasing function in

m, so the expected duration is longer if the used estimated m is larger. The following

* corollary summarizes this result,

Corollary 2.12.3:

For a given bum-in lot with unknown number of defectives, m, if ml < m2 be two

estimates of m, in addition to having

%i (1) t*(mla) < t*(m2,a), we have

5"'. V

'
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(2) E(DI m,t*(ml,ot)) < E(DIm,t*(m2,z))

where t*(m,c) can be the solution of equation (2.3.3) or (2.3.4) or (2.3.5).

If m is overestimated, we have a conservative rule: P(R(t; D,m, n) p) is larger

than what is truly required and longer expected duration of bum-in. If m is

underestimated we might not be able to achieve our desired reliability goal.

Suppose that m has prior distribution P(M=m0), for m--O,,--,n. In (2.11.3),

we have E(Dit*)= -m-0n P(M=mlo)o E(DIm,t*()) where t*(c) is the solution of

,_ equation (2.9.1) or (2.9.4) or (2.9.5). Using the above results, we have the

0 following corollary.

Corollary 2.12.4:

If t2* > tl, then E(Dltl*) < E(DIt2*).

A.-'-

-to
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§2.13 The expected duration of burn-in for different lot size, n, when

the ratio rn/n is a (fixed) constant.

This case, m/n is a constant, say r, is a very important case in studying this

screening procedure, since we usually assume that the ratio of the number of

defectives to the bum-in lot size, from a production line is a constant. The expected

duration gives us the idea about how long this bum-in will take if this screening

procedure is used. Some special (m,n) pairs may give us shorter expected duration of

burn-in just as happened in Theorem 2.6.1. For economic purposes (or any other

purposes', we need to know what these (m,n) pairs are.

*In ths case, as t*(m,cQ, L(DIm,ax) is not a monotonic function in m. This can be

seen trom the numerical computation. However, E(Dim,a) does preserve the similar

property a ; t*(m,ct) has, that is the following conjecture.

Conjecture 2.13.1:

Let ml be the smallest positive integer with mlo=l. For i=1,2,ooo, if mi t is the

' smallest positive integer more than the positive integer m i with mi,,-mi+1o = mi-

mio+1, then

* E(Dlmi,(x)<E(Dlmi+1,ox<..°_<E(Dlmi+,-I ,o) and E(Dlrni+ 1 ,o) < E(Dlmi,x),

(2.13.1)

when (2.3.3.) or (2.3.4) or (2.3.5) is used. And, let ni be the smallest positive

integer more than or equal mfr.

0,
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This Conjecture tells us to find the sequence (mi), i=1,2,"*, as defined before.

In addition, we use ni, which is the smallest integer more than or equal m/r, as the

*3 corresponding size of bum-in lot. Then, for this sequence of number pairs (mi,ni),

we are expecting to have

E(DIrni+l,c ) < E(Dimi,ax) for i = 1,2, ... (2.13.2)

And, (n,, i=l,2,°oo, are our corresponding burn-in lot sizes. In order to achieve the

best (economic) result through burn-in, we choose the appropriate ni from this

sequence.

Note: The above discussion is for the casc: that the burn-in lot size is to be

determined. If the bum-i lot size is fixed in advance, then the average of the expected

-- burn-in times, E(DIm,A/n, would be a good criterion.

"'-?

o -
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§2.14 The difference between the results of Marcus and Blumenthal

(1974) and the results of this procedure

Marcus and Blumenthal (1974) considered the case that no information about m

is available and solved our problem in different set up. Eventually, they try to find a

t*, as we did here, to ensure thac the number of defectives left after burn-in is

bounded with at least some desired level of probability. They were very successful in

finding the appropriate t* and ruled out the effect of m. The information about m was

assumed unavailable in their paper and they didn't consider the other cases as we

discussed here. Mainly, they solved t* by using equation (2.3.5) and had the solved

t* not depend on m and n with the cost of a longer duration of bum-in.

Here, we suggest to use equation (2.3.3) and to use the available information

about in to solve the desired t*. The duration of bum-in is shorter but it depends on

the information about m. When no information about m is available, we can use n-I

as the upper bound of T in (2.3.3) and q (defined in §2.2) as the corresponding

lower bound. In this case, we'll still have the solved t* less than the t* in their paper.
i-. ,"

-I Two numerical algorithms are suggested here for the calculation of t*. The binary

* search algorithm is good for all equations (2.3.3), (2.3.4), (2.3.5) and its extensions.

The fixed point iterative algorithm is used for solving equation (2.3.5) which was

used to construct the tables in their paper. These two algorithms are easy to write into

O a computer code and they are proved to be convergent.
1rn
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Since the information about m was assumed unknown in their paper, they didn't

have any discussion based on this. Here, we. have put a lot of effort in investigating

the

- properties of t*(m,cz) and E(DIm,t*) based on the available information about m and

intend to find a best bum-in lot size to fulfill our goal under the possible constraints,

like cost and time limitations, imposed on bum-in.

--.
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CHAPTER III

Nbe PROCEDURE II - SMALL SAMPLE THEORY

§3.1 Idea of Procedure 1

The maximum likelihood estimator of m (Johnson 1962) is mml(D) = JDtF(D,

where F is the cumulative distribution of the lifetimes of the defectives. The maxinum

--. likelihood estimator of m is used to estimate R(t;D,m,n) and the maximum likelihood

estimator R(t;D,mml(D),n) is obtained. Consider the stopping rule defined by

stopping as soon as R(t;D,mml,n) k(p,a,m,n). We attempt to find k such that P(

R(t; D, m, n) p ) ox can be achieved. Here k=k(p,cz,m,n) is a function of m. This

is not what we'd like to see because the value of m is not given exactly, but, we'll try

to determine an appropriate k =k(p,c,in,n) such that it is not very sensitive to m. We

also hope that a more appropriate k can be derived if more information about m is

1.". -available. Another interesting aspect of this screening procedure, as with the previous

two procedures, is the procedure's expected duration. We'll see that this is a function

of k. The expected duration of bum-in is also a function of m, since k is a function of

r iM.

The small sample theory for all of these will be studied in this chapter. The

corresponding large sample theory will be studied in the next chapter. The following is

a brief summary of this chapter. The definition of the stopping rule developed in this
t,1. 91
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chapter is given in Section 3.2. In addition, a generalization of this stopping rule is

also given in this section. The probability that this rule stops after exactly j defective

items have been removed from the bum-in lot is obtained in Section 3.3. In addition,

the probability for the generalized stopping rule is derived in §3.4. How k is obtained,

based on small sample theory, is discussed in §3.5, §3.6 and §3.7. In most of the last

part of this chapter, the performance of this stopping rule based on the expected

duration criterion is discussed. The number of the defective item left after this burn-in

procedure is given in Section 3.11.

tw
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§ 3.2 The Stopping Rule

Let D =the duration of bum-in and JD the number of failed defective items

observed up until time D

If m is replaced by its maximum likelihood estimator, m'" JD - exp(-D)), then we

have an estimator of R(t; D, m, n),

ROt; D, mmi, n)

1- ((mullr - JD)I(n - JD))'(l exp(-t))

= I- (((Jly((l - exp(-D)) JD)/(n - JD))*' - XP(-t))

= 1- ((JDy'(n -JD))-(exp(-D)/(1 - exp(-D)).(l - exp(-t))

= 1- ((JD/(n - JD)).(1/(exp(D) - 1))-(l -* exp(-t)). (3.2.2)

The idea of the stopping rule to be studied is:

Stop as soon as R(t;D,rml,n) ! k = k(p,cz,mn,n).

The value of k will have to be determnined, and since R(t; 0, mm1, n) 1, a minimum

burn-in period will be required to ensure P( R(t; D, m, n) ! p cc . The rule will be

presented formally below in a manner which facilitates the study of its properties.

Based on (3.2.2), we reformulate the stopping rule in terms of a sequence of

possible stopping times (Sj=s(nj~k), j=O, 1, 2, .. n) as follows. For a given k, 0

k 1,

<= I - (JD/( - JD))(l/(exp(D)-I)-(I exp(-t)) k (3.2.3)

<?1-k J JDJ))'{ I /(exp(D)-I -.(I - exp(-t)

<=>' exp(D) -A .JDy(n -JD)){[U - exp(-t))/(l - k))
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<=> D ln([(JJ(n - JD)].[(1 - exp(-t))/(1 - k)] + 1) (3.2.4)N Let Sj = s(n, j, k) = ln[U/(n - j))'((l - exp(-t))/(l - k)) + 1] for j=O, 1, 2, .... n-I;

Sn = s(n, n, k)=oo. (3.2.5)

Note:

So = 0 and Inequality (3.2.4) is always true at D--O.

The sequence of possible stopping times, (Sj, j=0, 1, 2, .. n}, is a sequence of

fixed values. Here, D, the time to failure of the defective item is random and

unknown, and the index J of Sj at which the ru!e stops is random.

Inequality (3.2.4) gives us a way to re-express the stopping rule: given that j

.. -failures have been observed, if the failure time of the (j+l)st defective item exceeds the

-. right hand side of (3.2.4) (i.e., after observing j failures, no additional failure has been

observed by time Sj), then stop burn-in; otherwise continue bum-in. Formally, we

have the stopping rule:

Stop burn-in at Sj.j when the first j is reached with Ti > S1 .1 for j = 2,

3, ... , n. (.3.0)

In this rule, k = k(p,m,n) needs to be chosen such that P(R(t; D, m, n) p) a is

guaranteed. Note: the value of j starts from two. If j starts from one, T1 > SO  0 is

K always true, i.e., this rule always stops at time 0.

Discussion:r-, 1. The function s(nj,k) is a monotonic increasing function in j. This means that the

more failures are observed, the longer the bum-in must be. run. It also means that

you don't stop when a failure occurs, but you stop when a gap between failures

[,.? becomes large.

[N
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2. The function s(n, j, k) is a monotonic increasing function in k. This tells us that to

get a higher (estimated) reliability a longer burn-in duration is required.

3. The function s(n, 0, k) = 0. This would tell us to stop immediately if there is no

failure at time zero, and we ignore this requirement.

4. The function s(n, 1, k) > 0. We use this as the minimum duration of bum-in.

5. The function s(n, n, k)=-, and s(n, j, k) < - for j=0, 1, .... n-1. If all the items

under bum-in are defectives, then bum-in cannot achieve the reliability goal. If m

n-1, then burn-in will be terminated at one of s(n, j, k), j= 1, 2, m.

Note:

1. In this stopping rule, we require that the index of j be at least one. If we did not,

K. since the MLE of R(t;D,m,n) is unity up to the time of the first failure, the bur-in

. would be stopped immediately unless there was a failure at start-up.

2. IfT 1 > S1, then stop burning-in. In this case, we have T2 > T1 > S1.

3. lhe upper bound of m is n-i, so n is used as the upper bound ofj.

4. If Sj_ I is replaced by Sj in (S.3.0), a more conservative rule is obtained. The

reason is that Sj > Sj_ 1 and the probability of Tj not exceeding Sj is higher than the

probability that Tj does not exceed Sj_ I

As a consequence of the fourth note above, we can replace Sj_I by Sj in this

stopping nile. The advantage of doing this is: a more conservative rule is obtained and

the requirement that at least one failure must be observed, imposed by using the MLE,

is removed. So, our new stopping rule is

- Stop burn-in at Sj when the first j is reached with Tj > Sj

-mr j 1, 2, n. (S.3.1)

;K-;it:>&, ... tjiCAP t'&t tat.t t .ta t t a
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The probability integral transformation converts an exponentially distributed

random variable T over (0,o) into a uniformly distributed random variable U over

(0,1). This transformation will enable us to analyze this stopping rule (S.3.1) through

a sequence of ordered random observations U1=1-exp(-T 1), U2=1-exp(-T 2), o,

U =l-exp(-Tj), -.° from uniformI(0,), where Ti's are the ordered (random) lifetimes

of the failed defectives under bum-in.

Let's define

Cj = c(n,j,k)

= 1-exp(-s(n, j, k))= 1-1/f l+[(1-exp(-t))/(1-k)1-(j/(n-j) }

= (j( -exp(-t))/[(1-k).(n-j)+j.(1-exp(-t))], (3.2.4)

where c(n, j, k) is a monotonic transformation of s(n, j, k). Based on this we have our

transformed stopping rule

Stop burn-in at c(n, j, k) when the first j is reached with Ui > c(n, j,

k), for j=i, 2, *-., n. (S.3.2)

I ere, j starts from 1 rather than 2.

We should be very cautious when stopping rule (S.3.1) or (S.3.2) is in use. One

I. very essential requirement for this stopping rule is thatj must be at least 1. This is due

to the application of the MLE of m. More precisely, let's look at (3.2.3). We can see

that (3.2.3) is always true if JD=0 or if there is no need of bur-in for this production

lot at the very beginning of our screening procedure. However, we believe that the

desired reliability goal cannot be achieved or the proportion of defectives in this

production is higher than acceptable without burning-in. In order to clailfy this

problem, we need that either a minimum duration of bun-in is required or at least one

rV
-~~~~~.-."..."... ..........- ..-- --. " ..-. - -.- .2- . _',~ ".. ... ..- t- ,,. ' - -' , - % .. _ . C ,- _. - .
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failed defective should be observed before burn-in is stopped if we decided to use

burn-in for a given production lot. Moreover, we noted before, that if Sj is increased

as j is increased, a much more conservative rule can be obtained if Si is replaced by

Si+i for any positive integer i. The choice of i is based on our reliability consideration.I To consolidate all the points discussed here, we have the

Modified General Stopping Rule.

For an appropriate choice of a positive integer i, stop burning-in at SI i

if T1 > Sl,.

For j=2,3,... , stop burning-in at Sj.i. 1 when the first j is reached with
,, V > SJ |. 1" (S.3.3)

or

if T, > S1,1, then stop at S1, 1 .

For j=2,3, ... , stop burning-in at Sj., when the first j is reached with

...i -" Tj > Sj+i. (S.3.4)

Here, (S.3.3) corresponds to (S.3.0) and (S.3.4) corresponds to (S.3.1). These

two rules clearly indicate that this screening procedure will not be stopped until some

minimum number of failures, i+l, have been observed.

First of all, we'll consider this procedure by assuming that m is known. Later on,

we'll briefly discuss how k depends on the available information about m. Since k is

the only unspecified crucial parameter of this stopping rule, if we know k, then we

know this stopping rule.

VV % %
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§3.3 P(J=jlm,k) of the Original Stopping Rule (S.3.0) or (S.3.2)

-.- Stopping rule (S.3.2) says: Stop burn-in at the first j with Tj > Sj where T is the

life time of the jth failed defective item, and stop burn-in at Si , for j=1, 2, o.., rr+l.

(To get Stopping Rule (S.3.0), replace Sj by Sj_ I for j=2,--,n.) So the proba-ility

that this burn-in procedure stops at time Si is P(J=j-lIm,k). This probability can be

calculated when m is known and k is given; i.e.,

P( stop burn-in at Sj>l I m,k)

= P( j failed defective items observed during bum-in when bum-in is stopped I mi)

= P(J=jIm,k) for j=O,1,2,...,m. (3.3.1)

* ,..

Let's evaluate (3.3.1). For j=O,

r1" - P(J=0In,k)

= P( bum-in is stopped before the occurrence of any failure I m,k)
- = P(T I > S, I m,k)

,N..'

= P(U1 > C1 Im,k)

= (I-C1 )m (3.3.2)

For j=l,2,.,m,

P(J=jim,k)

= P( j failed defective items have been observed when bum-in is stopped I m,k)

, = P( burn-in is stopped at Sj+ 1 I,,k)

=P( T, C1. T-, C2 , ..., Tj Si. TjI 1 > Sj 1 I m,k)

.,>

.-p -............. < _....U<CU+>C+ 1 Ik)
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= (m!/(m-j-l)! )-j ... f (I -u+)--Idilu ... du1O<u1 <C1 UltCj Cj+,~c 1 ir

- m'X11!(rn-j)!)). (1-Cj+1 )mx-JJ J f. duj.d u2du1 (3.3.3)
OculcC1  uIcu2c C2 uj1.cujcCjJ.

To evaluate the integral in (3.3.3), define

Bj B=I du1 C= C= C1.B0  (3.3.5)

B2 f f du2du1

- J (C2-u1) du1

=C 2. f du1 -Jf u~du1
OcucC1  OcucC1

= - (1/2).(C 1 )2 (3.3.6)

B 13 f I f dU3du 2du1
O<ulc ulcu2c C2  u2cu3<C3

3" ~~Oulcu- ulcu2c C2 ( 3 u)d~u
= 3* f--tu du2du1

CB2  f J2
OcucC: u1<u2< C2

C3-B2- (12) ((C2 )2 -U 1 )2 ]1du1* O<ucC1

=C3sB 2 -(1/2)-( C2 )2-B, + (l/2)*(113).(C 1 )3

= Z .. ii.1( 1i!).C3 ~ 1)~B3 ~(3.3.7)
4 i= 1,3

S%
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By mathematical induction, it can be shown that

Bj f fI ... fI u ..d~u
-O<u<CI ul<u2< C 2  uj duId<uj<Cj

Z. (-l)i-e(1/j!)( Cj1 i+l)i*Bji for j=1,2,...,m. (3.3.8)
. i=lj

From (3.3.3) and (3.3.8), we have

P(J=jIm,k) = (m!/(m-j)!).(1-Cj. 1 )m-j.Bj for j=0,1,2,...,m. (3.3.9)

Summarizing the above results, we have:

Theorem 3.3.1

P(J=jim,k)= (m!/(m-j)!)*(1-Cj+ 1 )m'i-Bj for j=O, 1,2,...,m. (3.3.10)

.. where j denote the total number of failed defective items observed when burn-in is

stopped at time Sj+ (Note: Cj = 1- exp(-Sj)).

S%
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§3.4 P(J=jlm,k) of the Modified General Rules (S.3.3) ( or (S.3.4))

As in the previous sections, we define P(J=jlm,k) as the probability that there are j

failed defectives observed when this screening procedure is stopped. This is the1 ., probability, for an appropri3te i, that T1  5 SIij (or T1  5 SI±i), T1 < S2- Ii(or T 2 <

S>0), ..., Tj Sj.I+i (or Tj -< Sj i) and T,+1 > SjII+i (or Tj+ l > Sj+l-i); or U1  C1, i

(or U 1 I< C1 2I, U 2 
< C 2-1+i (or U 2 < C 2 +i) . 5 Cj.l+ i (or Uj Cji) and

Uj+I>Cj+1 .+i (or Uj+ l > Cj++i) given m and k. Starting from here, the following

derivation will be based on stopping rule (S 3.3) (For stopping rule (S.3.4),

P(J=j Ir,k) can be derived in the same way by replacing the corresponding C (or S) in

the following derivations). The derivation of P(J=jl m,k ) for these two generalized

stopping rules is similar to the derivation of P(J=jl m,k ) in the previous section,

except some differences in the integration part of this probability. For the sake of

completeness, it is given here. The next part of this section is the derivation of

P(J=j Ink) for j=0, 1,2, n,m.

For j=0,

P(J=Oi m,k )

= P( burn-in stopped before the occurrence of any failure I re,k)

.= P(T 1 > Sw i Im,k)

,P(Uj > C1 ,j I m,k). (3.4.1)

For j=1, 2 , ... , i,

P(Jtjlm,k)

, ( j failed defective items observed when burn-in is stopped I m,k)

B,
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-P( burn-in is stopped at time EI m,k)

-P( T1  S1 +jT 2 !5S 2 -1+i1 ... T Sn-li Tj~1 > Sj,,- ~ I m,k)

-P( U1  C1.,1, U2  Q2i , U;: -~i Uj > C;+I1j4 1 I xn,k) (3.4.2)

% Let's evaluate (3.4.1) and (3.4.2). It is clear that

P(J=Olrn,k) = P(U1 > C1+1) (1-C1 j )lf (3.4.3)

P(J=llm,k) =P(U1 <C,.i, U> C2-1.+ilrmk) = m*C1~*(1-C2 1+i)(m1) (3.4.4)

To evaluate P(J=jlm,k) for j=2,3, ... , mn, let's define:

4j f U2  J f.. du1 ... uAdu 2, (3.4.5)

0 with A, C2 .1,1 and A0  1

We have:

2A 2 = f u2 du2  =(1/2>-C 11 +1 2  (3.4.6)
< 0U 2 <C 2 1

NA 3  f U 2 du3dU2
0<u <C uu < ec

2 2-1+i 2 3 3-1+i

=C 3.1 i .J U2 du2 - f U2
2  u

Ou<U2<C G< U2 <C21i
2A 2-113) 2 21+

-C 3 -14 *A2 -(/Cj+ 1
3  (3.4.7)

For j=4,5., by induction, We have

A f U2  Jf. duj-1 ... du3du2

Ocu <C u <U <C U. <U <C.
2 2-1+i 2 3 3.1+1 j-1 j j-1+i
- % i.Aji - (1 /2) ((q-1ii1)2 Ap 2 - (1/3)- {(Cj-I i 2 )3.Aj 3 -(1/4)'

-(1/h). {(Cnit.. isi+li)'Am-ir1/(h+1 ) (en- l/0j-1+i1-2)- K( 3 -1 4P 2

-- (lIj).(C2 liA-)- m} 1 (3.4.8)
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Finally, we have:

V P(J=21m,k) = (m!/(1 !(m-2)!))(1C (3.4.9)-A

P(J=K3Im,k) = (m!/(l !(m-3)!) ).( -C4p 1~j)rn-3 .A3  (3.4.10)

For j=4, 5, .

K ~ ~~~~P(J-jlrn,k) i >+ iink

= {m!/((2-1)!(r-j-)!))jf U2 J . j I-u+)-
OcU2cC2-i +i u2 cu-AcC3 j1i L.j-ljjcj.p~. CiI 1<i~~

duj ... dU3du2

-m/l-mj!](-jIimiA (3.4.11)

Note:

P(J=mlm,k)

-PU 1  C iti, U 2 C2.d.N ... Uj! C 1 I+i Um+i> Cm+ij1+iImk)

-P( U1  C2 -1 +0~ U2 5 C2 -1+i,., Urn 5 C7 -l i I m,k)

Hence we have the following theorem.

0 Theorem 3.4.1 ( under the Modified Stopping Rule)

P(J=Olrn,k) =I(- *Cw+)n

P=jln) {r!(j) (1*C 1 )liA, for j=1,2,...,m (3.4.12)

where, for using stopping rule (S.3.3)
*C for j-9 3, ___in and

TOC * = Ci+i.

BA%
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for using stopping rule (S.3.4) 104

,for j=0,1,2,3....m

Equations (3.3.10) of Theorem 3.3.1 and (3.4.12) of Theorem 3.4.1 have

identical expresions. If the C's and B's in equation (3.3.10) are replaced by the T's

and A's, then we have equation (3.4.12). Htereafter, we'll use

P(J=jlm,k) = (m!/(m-j)!)(1-Cj 1i )m-J B1  for j=0,1,2,...,m (3.4.13)

to denote these probabilities. It is trivial that the result which is derived based on

(3.4.13) should be good for both (3.3.10) and (3.4.12). This means that the

probability for stopping rules (S.3.1), (S.3.2), (S.3.3), (S.3.4) have similar

expressions, except for minor changes in the definition ofj+ 1 and Bj.

i.
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§3.5 The determination of k when m is given.

For a given m, we have defined mo* = (mo(1-exp(-t))-n.(1-p))/(p-exp(-t)) and mo

S= the smallest integer more than or equal to too*, and know that R(t; D, n, n) > p if

and only if j > m. In this screening procedure, k is cosen such that

P(R(t; D, n, n) > p I stopping rule) a.

In §3.8, we'll discuss the determination of k based on the available information about

in. Let's denote this in the following inequality.
X P(J=jlm,k) cc (3.5.1)
j= m0 m

or

.-@ .. (m!/(m)!-j).(1-Cj+l)m-J.Bj a. (3.5.2)
?€pp. o j= m

Any k that satisfies (3.5.2) will give us P( R(t; D, m, n) p ) o when this

sequential stopping rule is used. The possible stopping time of this screening
-'-'. procedure will be prolonged if k is increased, since Cj = j-(1-exp(-t))/[(n-j)o(1-

k)+j-(l-exp(-t))] is an increasing function of k. In order to reduce the duration of bum-

in, we'd like to find the smallest k with P(R(t; D, m, n) p) ! a. This k can be

obtained by solving

X (m!/(m-j)!).(l1C +1 )mt-Bj = a. (3.5.3)
j= mO rl

Note: We can denote the solution of (3.5.3) as k(in,a,p,n,t), since is a function of

S.. r, n and l-exp(-t).

Moreover, from the definition of Bj ( equation (3.3.4) to (3.3.8) or equation

*B. (3.4.5) to (3.4.8)), we know that the upper bounds of the integrals defining Bj's are

Ia-

'. ............................... _. ................................ .... .- ....-......... C ' - -% ., ... .

n .. ... ..- ~ * /l , .t .. '..%. i I - Iti 1.II I
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increased as k increases. So, the left hand side of equation (3.5.3) is increased as k

increases. Hence, there is at most one k which can be the solution of equation (3.5.3).
Eventually, for any ( in [0,1] and any ko in [0,11 with

X P(J=jlr,k=k o ) !5 (x Z P(J=jlm,k=l) =1, (3.5.4)• , .j= mOm jf-m0m

there is one and only one k in [ko,llsuch that

X P(J=jlm,k) = c. (3.5.5)
j= mO m

So we have the following theorem.

-- Theorem 3.5.1

If (3.5.4) holds for a given ko in (0,1), then, under any version of this stopping rule,

the equation

Y P(J=jTm,k) = a (3.5.6)j- niO, m

has exactly one k as its solution in [ko, 1]. In addition, if

X P(J=jlm,k--O) > ax (3.5.7)
j=mO'm

then

X P(J=jlm,k) > a (3.5.8)
j= mO rn

for any k in [0,1].

- - Note: If (3.5.7) is true, then no bum-in is necessary.

.-

S
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' . Finally, we have the following corollary.

- '-'%Corollary 3.5.1:
9*4%-..." For any ax in [0,1], there is a (unique) smallest k in[0,l] such that equation (3.5.8)

".- .e holds for mo=l1, or 2..or m.

'-':Note: From §3.3 and §3.5, we know that the expression for P(J mo) is quite

'-;"-complicated. To compute k from the results of these two sections are not easy when m

" -' -is moderately large. In the next chapter, possible k's will be derived through large

'-""sample theory.

r .
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§3.6 Numerical calculation of k when m is given.

.4).

For mo in (1,2, ... , m), let's solve k for

X P(J=jlm,k) = ax. (3.6.1)
j= O, m

We know that the left hand side of equation (3.6.1) is a monotonically increasing
'.-

function in k. If

Y P(J=jlm,k=0) > a, (3.6.2)
j= mO, m

then use k=0. If

" P(J=jlm,k-=O) < a < 1, (3.6.3)
* j= mO, m

then use a binary search to find k as a solution of equation (3.6.1). From Theorem

3.5.1, we know that such a solution exists and is unique.

A Binary Search Algorithm for k, a solution of equation (3.5.10):

1) Let kl 1 /2

2) If X P(J=jIm,ki) > a , then ki+ 1  ki - (1/2)i+ l . (3.6.4)
j- mO, m

if X P(J=jlm,ki) < (x, then ki+I =k i + (1/2)i+1 -  (3.6.5)
j= MO, m

3) If i < 30, then go to 2).

After 30 iterations, we will have Ik30 -k1 < 10-9.

Note: Since m is unknown, an assumed value of n is used for this algorithm.

0

,-,,4..
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§3.7 The determination of k with the available information about m

when n is fixed.
°d

.

If no upper bound of m can be specified, the most conservative choice of me, an

estimate of m, is n-1 when bum-in is required. In this case, for the corresponding k

value, we may try to derive it by replacing m with n-I. This is the same as what we

did in Procedure I. Similarly, if the upper bound of m is given, say n.re and re in

. [0,1], then we may hope to use me=n.r e and to find the corresponding meO and k. To

guarantee that a more conservative rule is obtained when a larger estimate of m is used,

we need to show that P(J meo I me,k ) is a monotonic function in me. However, we

have the following difficulty:

Difficulty:

We should use P( J meo I me,k ) = a to solve for k. However, I cannot prove that

k(me), the solution of P( J meo I meo,k) = o, is a monotone function of n. That is I

can't see when a larger k and a larger probability P( R(t; D, mn, n) p) will be

obtained. One conservative k is obtained by letting k = max[k(m); n ranges over its

possible values). This k will give us P( R(t; D, m, n) p) a based on the following

theorems.

Define f(me,k) P( j 2 e0 I m,k).

Theorem 3.7.1:

For fixed n, n and me , f(me,k) is a monotonic increasing function in k.

N-3
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Proof:

We have P( J meo I m,k) ; P( U1 <C 1 , °°, Ume < Cme I rn,k) and for

i=0, ,..,n- 1, Ci=i.(1-exp(-t))/ { (n-i).(1 -k)+(i-(I-exp(-t))) is a monotonically

increasing function in k. Using the property of uniform order statistics, for fixed m

*- and me, It's clear to see that f(rne,k) is a monotonically increasing function in k. The

proof of this theorem is completed.

Note:

1. This theorem tells us if a larger k is used for a given bum-in lot then a higher

".' reliability will be achieved through burn-in, since the boundary of stopping time is

increased. That is a conservative rule is used if a larger k is used.

For fixed n, m, and k, f(me,k) is a monotonic increasing function in me where me

is an estimate of m.

3. For a given bum-in lot with unknown m, suppose rnle and m2e be two estimates

of rn with mIe < m2e. If kI is the solution of P( J - roe01 m,k ) = t and k2 is the

- solution of P( J ! mn2eo I m,k ) =a, then k1 _ k2.

If there is a prior distribution of m, M ~ P(M=mlO) for m = 0, 1,o., n, then we

may use Bayes Rule or follow an argument similar to that of Procedure I to obtain an
appropriate percentile of m and use the result in §3.5 and §3.6 to get the appropriate

value of k.

For finding the Bayes rule, suppose NI - P(M=mlo) for m = 0, 1, *.*, n, then

- .PI R(t; D, M, n) > p ) 2! X

,,-i-[ <=> -. mf0l P( J > mormk ).P(M =mlO) a a

i

';'2
2  4= > ' m_<n, { (0 P)/0 -exp(-O))IP(Mv=r110) +Y-n'0 -- )/(l -e' p~t)))<m-Cn p J  lm ) ° (M m )

%%



a > cc. (3.7.1)
.1*

Note: If in n'{(l-p)/(1-exp(-t)}, no burn-in is required, then P( J t molm,k) = 1.

To determine k using an appropriate percentile of m, let B =,Ja and mB = min{ m:

P(M S< m) > B). Let k be the solution of ka such that

* P( J _rn omB0 Ir) P( R(t; D, mB, n) p )= c(, where mBo is defined as the mo of m.

-:-- In particular, we have

P( R(t; D, M, n) > p)

-- = "m0,n P( J - molm,kB )*P(M=ml0)

-,= X-mcP(Jmamk)P(M=mlO)+Xmn,nP(Jlmom,kg*)P(M=ml0). (3.7.2)

If the solution of k, k(m), obtained by using P(JPmolm,k) -x is an increasing

function of m, then we have the following inequality, for P( R(t; D, M, n) p). This

is the difficulty described in Section 3.6.

P( R(t; D, M, n) p

-. X0)<rn_< BP(M=ml)+r<m_,<nP(J__mom,k)-P(M=ml )

.3. + XmomnP(J__molm,k8)°P(M=rnO) a. (3.7.3)
(Note: We are expecting to have YZ.nP(J molm,k).P(M=mO) <_ (1-a)1/2.)

, Here, the derivation of k3 is much more difficult if we are going to solve (3.7.2).

However, a lot computational effort can be saved if (3.7.3) is used. In this case, we

only need to find mB and we have a conservative stopping rule. Note that, in this case,

this rule might be too conservative.

O."

5. o

S..



112

§3.8 E(Dim,k) and the Distribution of 1)

The expected durations of bum-in based on the rules defined in this chapter (or

equation (3.4.13)) is denoted by E(Dit-n,k) when im and k are given. From the

definition of this stopping rule, it is known that burn-in will be stopped at S, or S2 or

or Sm,,, wvith probability P 0=01m,k), P(!=lI mnk), ,.,P(J=mlm,k). Hence

E(Dlmn~k)

=XSj+p-P(Jzj~rn,k)

=Om

=X Sj.+, (rn!/(mj)!).(1ICj+1 )m-j-Bj (3.8A)
jz O.m

where q = I - exp( -Si- for j-O,1,...,m and Biis defined as in (3.4.13).

If m has s ;rne prior distribution, N4! - P(M1=m1o), then

E(D10,k)

= m=0 .n Pri!\1o).E(Dlm,k)

SP('N=m1)-r..om Sj.(m!/(m-j)!).(l&J 4,-)mi.*Bj. (3.8.2)

Thl duration of burn-in, D, of this rule has discrete values: Ci, for i=1,..-,m+1 (or

n). It is clear that

0 ~P(D=Ci+Ilm)i = 1INJD=i) for i=~,*,.(3.8.3)

Stopping at C1+ is the same as screening out i defectives.

0v
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§3.9 To compare the duration of burn-in for a given burn-in lot when

different estimates of m are used.

For a given burn-in lot with unknown m, suppose ml and m2 are two of its

-Etimates with ml < ni2, let k1 be the solutiou of P(J ml I ml,k) = a and let k2 be

de soluion of P( J m2o i m2,k) a. In this section, we are interested in whether

E(DIkl) is less than E(Dim,k2) or not. This can be used to decide if a larger or
smialler estimate of rn should be used in deriving k. In order to save bum-in time, we'd

like to pick up the estimate which gives us shorter expected bt r-in duration, provided

V .the ieliability goal is meL

From Section 3.2, we know thai if k1 < k2, then the stopping time boundaries

2':i(kl) Ci(k2)) for i=l,2,,,.,n-1, where Ci(k1) is the Ci obtained by replacing k with

6 k I and Ci(k2) is the Ci obtained by replacing k with k2. So, we have the fol!owing

Theorem 3.9.1. Before proving this theorem, we need the following trivial lemma.

Lemma 3.9.1:

Suppose ml and m2 be two positive integers with ml < m2, P1 and P2 be two

probability functions defined on j0,1,2, --- I with ):,j<miPlU) = 1 and Zojm2P2(j)

1 and, for i=0,1,-.,, Xicj<miPl(O) XiYj2m 2 P2(i). Let gl(i) and g2(i) be two

- positive and increasing functions defined on {0,1,2,-} with gl(i) _< g2(i). If the

above conditions are true, then

"ij l (i),P 1(j) Xi<j_<m 2.2(i)oP2(j) (3.9.1)

,.. Note:

- -If l(i) = g2(i) for all i, we have equality in (3.9.1).

If there is at least one i with gl(i) < g2(i), then we have inequality in (3.9.1).

'As
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Theorem 3.9.1:

E(Dim,k) is an increasing function in k.

Proof:

For j=2,o-o,n-1, we have P(J jlm,k) P( Ui < Ci(k) for i = l,°j-) -

Xj<icm+iP(J=ilmk) is an increasing function in k. In addition, we already have that,

for i=0,1,oo°,n-1, Ci(k) is an increasing function in k. For 0 k1 _ k2 <l, using the

above lenmia, let Pl(j)= P(J = jlm,kl), p2(j)= P(J = jlm,k2), gl(j)= Cj(k]) and g2(j)=

ICj(k2). We have that E(DIm,k) is an increasing function in k. The proof of this

"." theorem is completed.

Note:

Smaller estimates of m with k will give us shorter expected duration of burn in. But,

we should be very careful in his case, our reliability goal may not be able to :i nic, ed if

m is under estimated.

S
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§3.10 To compare the expected durations of burn-in, in the same burn-

in facility, for the burn-in lots from different production lines.

In this section, we consider the case that two burn-in lots from two different

production lines are tested in the same bum-in facility, same lot size n. To simplify the

discussion of this, we assume that the defective items in these two lots have the same

failure time distributions. The only difference between these two lots is the numbers of
~defectives in them, say ml and m2 with ml < m.2, both of these two numbers are

unknown. Let mle and m2e be the estimates of ml and m2, respectively, with mle <

m2e, Here, we are interested in which burn-in lot has longer expected burn-in

i - duration.

-.

First, let's consider the case in which the same sequence of stopping times, the

same k, is used for these two lots. This is the following theorem.

Theorem 3.10.1:

For two positive integers ml < m2, E(Dlml,k) E(DIm2,k). (3.10.1)

Proof:

As in Theorem 3.9.1, the 3ame k implies that we'll have the same Ci's.

We have, for 0 < ml < n and j=0,i,2.--,n-1,
"a7. P( Ui,lI < Ci, for i=1,2,..-,j) P( Ui,m2 < Ci, for i= 1,2,-.-,j).

where Ui,m I's are the uniform order statistics of size- m l and Ui,m2'S are the uniform

order statistics of size m2. This inequality tells us that P( Jml j) 5 P( Jm,2 j) for

j=O, 1,2,'*, where Jm 1 is the observed number of the failed defectives if the numberV of defectives in bum-in is ml, Jm2 is defined similarly. Using Lemma 3.9.1, the

pro,,: i dis theorem is completed,

0}
1N"
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This theorem tells us that burn-in will be longer for the lot with more defective

items. In addition, the comparison between E(Dlmle,k(mle)) and E(DIm2e,k(m2e)) is

considered, but no good results are obtained. One difficulty is that numerical results

show that k(m) is not a monotone function of m.

MI
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§3.11 The Number of Defective Items Left after Burn-In

Define L as the (random) number of defective items left after burn-in and? be any

(fixed) non-negative integer. As in Marcus and Blumenthal(1974), we might want to

have P( L 0) _x if this screening procedure is used. It is clear that L = m - J. We

have P( J me I m,k ) a , which implies that P( L r m-mo I m,k ) ao. To find

P(Lq), we may try to have appropriate parameters, t and p, such that m-mo=q.

However, we don't know what m is, even though it is a fixed integer. If the least

upper bound of m (or an appropriate estimate), n-r with r in [0,1], is known and an

appropriate k value is obtained as described in the last several sections, then

.. P(L_5q)

>P( L < -rno I m,k)

P( L m - (n-r-(1-exp(-t))-no(1.p) )/(p - exp(-t)) ) cz.

This inequality is true since

m - mo*

i= m- (m'(1-exp(-t))-n.(1-p) )/(p - exp(-t)))

=m{1 - (1-exp(-t))/(p - exp(-t))J + n(1-p)/(p - exp(-t))

=- m°(1-p)/(p - exp(-t))} + n.(1-p)/(p - exp(-t)) (3.11.1)

and (3.11.1) is monotonically decreasing in m ( as we have in the previous two

chapters) and nor is an upper bound of m.

If m has known prior distribution, say M - P(M=mlO) for rn--0,1,2,-,n, then
S

P{ L 5qIO,k) =P(J>M-10,k}

-" m=o,nP(M=m9)°P( J m-q I M=nk)

* =Xcru P(Mm 6)±<m<nI'(Mn )P(J =m-yM=mk) (3.11.2)

S"

S ..

'4€ "
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Theorem 3.11.1:

The smallest k in [0,1] such that (3.11.2) holds if0 <t < 1 is quaranteed unique.

Proof;

Since, for rn=0,1,2,..o,n, Theorem 3.7.2 tells us that P(J m-qlM=m,k) is an

-9. increasing function in k. For k=1, the left hand side of (3.11.2) is

.o-0 P(M=mlO)+X_m: P(M=mO).P(J m-qIM=m,1)
'I-- = Xo0 -mP(MmiO)+X. mcnP(MzmO)° 1 = 1.

For k = 0, the left hand side of (3.11.2) is4/ ..

--0,"'pm_<P(M=ml0)+Ym<mnP(M=ml0)'P(J m-qIM=m,0).

If(*) cx then k = 0.
0

If (*)< ot < 1, then, using the property that P(J t m-IM=m,k) is an increasing

function in k, we have a unique k in [0,1] as the solution of (3.11.2).

The proof of this theorem is completed.

Note: P, L O f O,k } for some fixed q is the probability of the number of defectives

in a randomly chzosen production lot after burning-in is less than q, where the bum-in

lot size is n and the number of defectives in it before bum-in has prior distribution

P(M=mO) for m=O .... n.

Fnr NI - P(M=miO), the expected number of defective items left after bum-in can

be calculated, too. Let's consider the case that M is binomially distributed with

--.- paraneter n and r where r is in [0,1]. We have
S-.

P(M=mlr) = (n//in!'n-m)!)).rm.(1-r)n - m f..or e=0,l,2, ,n (,11.3)

and

4,.. P(J=j,NI=rnir,k)

4?.

.. . .... ,''-..'" .... '..'~ .. .,- . ... o. . . . . .. . . .. , .. ,. ... -.. , . b. , a .. ., . t .. & , _.A A A# ,,- : ,, -: -, --. 2. ,:, ...... ...... a...a-----
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N = P(J=jlm,k).P(,M=mlr)

= (m!/(m-j)!).( 1-Cj+l)m-iBj(n!/(m!(n-m)!)))rm(-r)l-mf (from Theoremn 3.4. 1)

(n!/[(m-j)!-(n-m)!)]).(1-r)n-m.( 1-Cj+l )m-JorrnBj (3.11.4)

- In this case, for m = jj+ 1, .. ,n, the posterior probability of M given J~j is

P( Nl=m I J=j, r, k)

P(J=j,M=mlr,k)/(X- P(J=j,M=plr,k) )(3.11.5)

= (n/(nj'(-)))(Irnm(-jlmjr BjI( [(n!/(n-j)!)ri.Xt[(n-j)!]/[(ji-j)!
gi=j~n

tre(1-qj+i)/[1-~.1C+) r~ (3.11.6)

U-. which is binomial.

* We have L =M-J, the number of defective itemxs left after burn-in. So the posterior

* probability of L given J=j is

P L-- J=j, r ,k)

I(n-j)!/((n-j-)!1!) )*f ((l-r)/Il-r'Cj+l ))n+j-t.r(iCj+l)/1r.Cj+l)1 (3.11.7)

which is derived from (3.11.7) by replacing m-j with . Hence, given M - Bin(n,r),

Sj'=j and k, we have that L is binomially dist-ributed with parameters n-j and r.(I-

Cj~l/(lr~q ,).So the expected number of defective items left after this bum-in

procedure being stopped with j fa-iled defective items observed is

*E(LIJ=j r,k) =(n-i)or*(l-Cj+1)/I-rcq+1 ). (3.11.8)

It is c-lear thait, given M -Bin(n,r), the expected number of defectives left after burn-in

i S

*E(LUr,k) Y_ jX ~ P(J=jlr,k)'E(Llj,r,k) (3.11.9)
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where

N", P(J=jlr,k) = .. j,,,P(J=jNM=mirk)

= X p~(!/tm-j!.(-m!)J.(1~r~lm.1 Cj+1)m -rmB J.
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% CHAPTER IV

% "bPROCEDURE II - LARGE SAMPLE THEORY

§4.1 Introduction

In this chapter, limn.>j.P(R(t;D,m,n)_>p) is investigated through

limm_.>ooP(Um:I < Cl (k), Um:2 < C2 (k), o.., Um:m0 < Cmo(k)),

where Um:i is the i-th uniforrn(0,1) order statistic from a sample of size m, Ci(k) is

defined as in chapter 3, and m is the assumed true number of defectives in a bum-in lot

with size n and <limm.,m/n=r < 1. This investigation tells us the following results:

""1. limm_>ooP(Um. 1 < Cl(k)) < 1. (4. 1.1l)

Thus, limm->.P(Um: < Cl(k), Um:2 < C2(k), , Um:i < Ci(k)) < 1 for any i,

1 <iSm.

This tells us that limn_>,P(R(t;D,m,n) p) a may not be achievable if we do

not modify this stopping rule to prevent it from stopping at an early stage of burn-

in. For 1 i(m) < m4-t with .. < 1/2, we will see in §4.2 that the limit of the

convered stopping time lirnm_>.,, Jm.( Ci(n)(k) - i(m)/m) = 0. (Note: If

lirn sup i(m)/,m = 0, then lim m->.c 4 m( Ci(m)(k) - i(m)/m ) is still 0.) This limit

tells us that the chance of stopping this screening procedure before the first ',im

defective items have failed is high, i.e., the chance of stopping this rule before m0

defective items are eliminated is high. In addition if limm_> i(m)/q'm is a constant,

'A' then !ir .>'m-(Ci(t)(k) - i(m)/m ) is also a positive constant and

-V
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linm>,P(Um:i(m) < Ci(m)(k))=l.

The limit, inequality (4.1.1), will be discussed in detail in Sections 4.2 and 4.3.

2. Let j(m) and rf(m) be arbitrary functions of m satisfying

rL(m) < mo-ml <j(m) < mo, (4.1.2)

where ji is a constant with 1/2 < k < 1.

%%-"If k=p,

i ]iUm- ,P(Um;m-t<Cm(k),UmimP+l<CMl+(k),'°°,Um~(m)<Cl(m)(k))=l, (4.1.3)

lifml>o,,P(Um:j(m)<(k),Um:j(m)+l<Cj(m)+(k),o",Um:mo<Cmo(k)) < 1. (4.1.4)

In addition, if k > p then

I limm->,P(Um:l(m)<CTI(m)(k),Um:nl(m)+l <CT(m)+1 (k),°*.,Um:o .m0(k))= 1 .(4.1.5)

Equation (4.1.3) tells us that this stopping rule will not allow the bum-in process

to stop before the number of detective items eliminated is very close to mo - mg, if

it has not stopped prior to stage mr-. As in (1), the case p=1/2 is of interest to us

and it will be studied in detail in this chapter. Inequality (4.1.4) will be used to

find the value of the constant k so that P(R(t;D,m,n) p) oa is ensured under this

stopping rule. Based on (4.1.1), (4.1.3) and (4.1.4),when k=p, if we don't stop

bum-in at an early stage then bun-in can only be stopped in a small neighbornood

of mo. The study of this neighboihood is the most important part of this chapter.

In addition, Equation (4.1.5) tells us that if bum-in is not stopped at an early stage

and k is more than p, then the limit of P(R(t;D,m,n) p) as m goes to infinity is 1.

-," Based on these results, two algorithms to find k are developed. Note from (4.1.4)0.
"t and (4. 1.5) that as n -> c, we must havc k=k(p,a.m,n) -> p. One of these two is

.- tUite 'asy to use to obtain k. This is the majo, application -f the large sample theory of

N'

-"'-



this procedure. Remember that the algorithm to find k in the previous chapter is very

complicated. In addition to this, equation (4. 1. 1) tells us that our reliability goal
P(J..~) p ( m I < C k , U : 2 k . , U ~ O < C O k ) '

A may not be achieva'ble unless the early stopping bounds Ci(k) are defined

* appropriately.
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§ 4.2 Notation and Definitions

Let U1, U2 , ., Um denote independent uniform[0,1I random variables on [0,11,

and define the uniform empirical distribution function Gm by

Gn(u) (1/m)-Yi=l,mI(U i u) for0- u 1 (4.2.1)

iwhere

I (Ui < u) = 1 if Ui < u, other'ise l(U i 5 u) = 0. (4.2.2)

The inverse of the uniform empirical distribution function is defined as

Gi- 1 l(u) = inf(x: Gm(x) ; u) = Um:i for (i-1)/m ! u < irm and 1 _ i 5 m (4.2.3)

Nwith Gm0
1 (0) = 0, where

Un: 1 5 Un: 2 _< ".. -Um:m< Um:rnm+1 - 1 (4.2.4)

denote the uniform order statistics. For 0 5 u < 1, define the uniform quantile process

Vm(u) = Nr( Gn (u) - 1(u)) (4.2.5)

and let

V(u) denote a Brownian bridge. (4.2.6)

We have the following well-known results (The proof and the discussion of these

results can be found in Billingsley (1968), or Csorgo (1983), or Shorack and Wellner
(1986). The proofs will not be repeated here ). For 0 < ul< u2 . ui< 1,

{ (Ul),Vm(u2))d IV(ul),V(u) ... (uiui)) as m - o, (4.2.7)

0-" i.e., Vm converges to V in finite dimensional distributions (Csorgo (1983, page 12)

Moreover, the quantile process, Vm(u), converges to the Brownian bridge, V(u),V' weakly in the space of discontinuous functions with right limits equipped with the

Skorokhod topology. The Skorokhod representation implies that there exists a

probabilitv space with a sequence of B3rownian bridges *v*m(u); 0-u 1} such that

SuP 0 ut i Vm(u) - V*fll(u) I ->p 0 (4.2.8)

0b

o~
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. linfm_>,P(Um:I < Cl(k), Um:2 < C2 (k), °, Um:mo < Cmo(k)) (4.2.11)

is the boundary crossing probability of a Brownian bridge (quantile process).

However, the mean and variance of V(0) are both 0, and the boundary at 0 is also 0.

(See Equation (4.2.1) below.) So, we have the following difficulty: there is some

unclear positive probability that the stopping rules, defined in Chapter 111, stop before

_ a sufficient proportion of defective items is removed. In order to avoid this difficulty,

let's modify these rules by replacing the C;(k)s with CmhI(k) if 1 5 i n4'. So, we use

the Modified Stopping Rule:

- Stop burn-in at Ci*(kt) when the first i is reached with Ui> Ci*(k,) ,

-where

. Ci*(kV) Cm l(k) if 1 i mP,

Ci(k) if rn' i n-i. (5.4.1)

After this modification, th: stopping times of Stopping Rule (S.4.1) will mainly

depend on no(k)/m. We can see this property from Lemma 4.2.1 below. In Section

F 5.4, we will study the case that m is at least 320 and n is 4000 numerically.

Let limitn_> m/n-r. We have

limitm_>1 , *m(Cj(m)(k)-j(m)/m) (4.2.12)

-. liflitn_>, \m.*Q(m)/m).{((1 -exp(-t))/({((n-j(m))/rn).(1I-k)+(j(m)/m)*( i-exp(-t)) - 1)

0, if j(rn) =o(dmi), (4.2.13)
'."1 for some -0.C < if limitj(m)/im)= 1 /(ro(l1-exp(-t)/(1-k)- 1 (4.2.14)

if so(k) > limtn.>. j(m)/rn and lira infj(m)/lm = +o, (4.2.15)K' = 2 K for some - < 2 c oif

j(rn) m. ((1-exp(-t) - (n/m)*( l-k).(l ) l/[(k-exp(-t)).( l+a/gIn)

where a=s2/so (k) (see the following note), (4.2.16)

K '**". .?. .'.7."* ."".-. '" 7 ;.*d ' ..'..", ."•" -., *" """*" """'"""""" "
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S- , ifs 0(k) < limitn.>,j(m)/m_ 1. (4.2.17)

FUrthemaore, it is clear that

2:;7 0 if limitn>,, (j(m)/m - s0(k) ) = U, (4.2.18)

2> 0 if limitn>, (j(m)/m - s0(k) ) < 0, (4.2.19)

q2 < 0 if limitn>- (j(m)/m - s0(k ) > 0. (4.2.20)

Note: In order to ensure

-iniitn->,,,,,m" (j(m),'m). (1 -exp(-t))/( ((n-j(m))/m).(l -k)+(j(m)/m).(l -exp(-t)) - 1 } =2

-when limitn-.. j(m)/m = s0(k), we need to have

(1-exp(-t))/{(n/m)-(1-k)+(j(m)/m).(k-exp(-t)) - "= a/4m for a = q2/so(k).

That is

j(m) = m, {(1-exp(-t) - (n/.n),(I-k).(14.a/ Jm)}/[(k-exp(-t)).(14 a/,m).

In order to remove at least mo defective items, we don't want to stop before so(P).

To help achieve this goai, we replace all Cq(k), 1 _< j __ 4m, by Cmrn(k), for 1/2 < i. <

1s~nce

linmitm_>, mo(Cm4.(k)-j(m)/m) -,,when lim sup j(m)/m =0. (4.2.21)

*)., We can take k > p to have P(R(t; D, m, n) _ p) converge to 1 as m-> ,. That is, if

k > p, the screening procedure defined by the modified stopping rule (S.4.1) will be

forced to ignore the first ",m failure times and the probability that the ratio, J/m,
V

reaches s0(k) will be approximitely one (if m is large enough). Moreover, (4.2.9)

implies that so(k) > s0(p) if k > p. Thus, we know that this screening procedure will

stop after so(p) with probability approximately one, i.e., the probability that R(t; D, m,

n) _ p will be approximately one.

.IV

S...,,

"'.

, p .)..•



128

Using equation (4.2.21) and the facts that mean and variance of V(0) are 0, we

have

*: -limitm->oo P(Um.1<Cmt(k), Um:2<Cmt(kt ,** Um:mg<Cm.t(k)) = 1 for 0<t<1/ 2 .

Before proving Lemma 4.2.1, for k _ p, let's define

so..(k) = so(p) - (so(k) - So(p))/2 and so+(k) = so(k) + (so(k)- so(p))/2.

It is clear that if k > p then

so,(k)<so(k)< so(k) and lir k-> p so-(k) = lir k-> p so+(k), (*)

The following lemma gives the boundary of Stopping Rule (S.4.1) in terms of so (k)

ri and so+(k).

Lemma 4.2.1:

- For k > p,

lir inf Vrm.(C*j(m)(k)-j(m)/m) = 4-co if 0 < lim (j(m)/m) so.(k) and (4.2.22a)

lim sup qm-(C*j(m)(k)-j(m)/m) = -oo if 1 > lir (j(m)/m) ! so.(k). (4.2.22b)

IIProof.
If 0 <-imitn_>,j(r)/m s0 (k), then, by using (4.2.15), (*) and (4.2.19), we have

If0 limir (n)r so

lin inf Vm.(C*j;njk).j(m)/m) = €,"o The reason is that

n inf n-(C*j(m)(k)-j(m)/m) < +- may occur only when lim sup j(m)/m - 0 as

seen from (4.2.13) and (4.2.14).

If I > lir (j(m)/m) ! s0+(k), then, by using (4.2.17) and (*), we have lim sup

\'m(C*j(m)(k)-j(m)/m) = -cc.

The proof of this lemra is completed.

K: fHere, k (or s0(k) ) is the only parameter under our control. If k is too large, a lot

of time will be wasted on extra burning-in. If k is too small, we might not be able to

%
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achieve our reliability goal. In 'zhe following sections, we shall try to use the previous

len -ma to find k(mn) so that

PCIH(Um:j-j/m) < qm(C*,(k)-j/m), j=1 ,,..,mo(p)) x (4.2.25)

for sufficiently large m.

e-

EN%
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§4.3 Property of the Transformed Stopping Time as A Boundary For

the Brownian Bridge

To investigate (4.2.25) in more detail, let's define

d(s,k)=d(s.r,k)=s-{(1-exp(-t))/[(1/r).(1-k)+s-(k-exp(-t))]- 1) for 0 <s _ 1. (4.3.1)

For 0<s_<1, nVn=r andj = [mes], it's clear that

Cj(k) - j/m

= j.( 1-exp(-t))/{ n,( 1-k)+j° (k-exp(-t))) -j/m

= (j/m).{ (1-exp(-t))/[ (nlm),(1-k) + (j/m).(k-exp(-t)) -1}

s- s[ (-exp(-t))/[(1r)°(1-k)+so(k-exp(_t))]_I

=d(s,k) for 0 < s < 1.

The function d(s,k) is a transformed stopping boundary of our unmodified stopping

rule. For our modified stcpping rule (S.4.1), define

d*(j/m,k) = NYm.(C*j(k) -j/m) for 1 _Sj 5 m. We have

-md*(s,k) - "m-d(s,k) for 0 < s 5 1.

Moreover, by using Lemma 4.2.1,

if limitm_> i(m)/m = s < s0.(k), then lim inf (im)d(i(m)/m) +0,

If limitrn_ i(m)/m = s > s0+(k), then lir sup (Nm)d(i(m)/m) =

If s0_(k) < limitm>, i(m)/m s < so+(k), then the limit behavior of (Im)d(i(m)/m)

depends on how k is defined as a function of m.

In addition, the cofidence of achieving our reliability goal, R(t;D,m,n)!p,

P(R(t;D,rn,n)_p)

= P(%/\'i(Uinj-j/n) < "rn°(C*j(k)-j/rn), j= l,.°°,mo(p))

is approximated by
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P(V(s) < <(n.r).d(s,r,k), for O<s!<s 0 (p)) (4.3.2)

In (4.3.2), we omit the point s = 0, because for C*j(k), the limiting process cannot

cross its boundary at s40.

So, Nlm-d(s,k) il the Loundaxy of interest to us.

,'.- Using Lemma 4.2.1 and Equation (4.3.2), we know that

P(R(t;D,m,n)_>p)

. P(Vmfj/m) < ml/2.dU/m,m/n,k), for O<j/ms 0(1p))

By using the weak convergence of Vm to V as described in (4.2.8) and the above

discussion, we have

P(R(t;D,in,n) >p)

- P(V(s) < q(n-r).d(s,k), for O<s5s 0(p)) - 1, if k > p, (4.3.3)

when Stopping Rule (4.2.1) is used, i.e., assuming

P(V(0) < limm_>* and j(m)/m->O nm(C*j(m)(k)-j(m)/m)) = 1.

In -der to ensure P(R(t;D:m,n) p) =c,we can find an appropriate k(p,a,xn) by

solving

P(V(s) < "(n.r).d(s,r,k(p,a,m,n)), for O<s_<s 0 (p)) = a, or

P(V(s 0 (p)) < (n'r).d(s0 (p),r,k(p,a(,m,n))) = a. (4.3.4)

The reason is: P(V(s) < '4(n.r)-d(s,r,k(p,om,n)), for 0 <s<so(p)) 1 for k > p. In

addition, we will show in Section 4.4 how to choose k(p,a,m,n) so that

P(R(t;D,m,n) p) a.

Before giving the procedure to find an appropriate k, let's investigate some

properties of d(s,r,k).

S.- ::%
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Lemma 4.3.1:

-- (1) For 0 < r, k 1, d(s,r,k) > 0 if and only if 0 < s < so(k).

(2) d(s,r,k) is an increasing function in k and r.
Note: We are interested in the case d(s,r,k) > 0, i.e., limitm.>,,,, 4 (n-r).d(s,r,k) ,

because we'd like to have our reliability lilnitm_> 0 P(R(t;D,m,n) :p) close to 1

(exceeding or equaling a).

Proof:

Since s > 0, to prove d(s,r,k) > 0, we only need to show

(1-exp(-t))/{ (l/r)( 1-k)+s.(k-exp(-t))} -1 > 0. (4.3.5)

Inequality (4.3.5) is true

<=> 1-exp(-t)) > (l/r).(I-k)+s.(k-exp(-t))

<=> s < ((t-exp(-t)) - (l/r)(1-k))/(k-exp(-t)).

It is clear that d(s,rk) is an increasing function in r and k. The proof is completed.

- .4 Nole:

- ' 1. For 0 <s < 1, we are only interested in the case that

0 < ((1-exp(-t)) - (1/r)o(1-k)}/(k-exp(-t)) < 1. (4.3.6)

The right hand side of (4.3.6) is true
- - <=> ((1-exp(-t)) - (1/r)*(1-k)) < (k-exp(-t))

<=> 1-exp(-t) - 1/r + (1/r).k < k -exp(-t)

Sc=> k.(l/r -1) < lI/r- I

<=> k < 1.

k < I is always true, otherwise, at k=l, C(1) = 1 for all j, i.e. never stop bum-inS

until al items are removed from bum-in lot.

The left hand side of (4.3.6) is true

<=> 1 exp(-t) > (1/r)*(1-k)
O'

p'.

Si1
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'-< c=> r > (1 - k)/(1 - exp(-t)).

This tells us that no burn-in is required if r < (1 - k)/(1 - exp(-t)).

'*." 2. For" any fixed r, if kI < U, then d(sr,kl) < d(sr,k2). This tells us that for two

-a. -- burn-in lots from the same production line. The lot using larger k will have longer

- bun-Ln duration and higher P(R(t;D,mn) p) if n is large enough.

3. For any fixed k and r, d(sl,r,k) < d(s2,,k) if sl < s2. This tells us that, when the

same stopping iule, same k, is used for the production lots from the same

I. production line, more time is required to screen out more defective items.

4. For any fixed k, d(s,rl ,k) < d(s,r2,k) if rl < r2. Therefore, if the same k is used

for different bum-in lots from different production lines, more bum-in time is
S
. required for the lot with a larger proportion of defective items in it. In this case,

more defective items must be eliminated through burn-in for the lot with more

defectives.

- In order to have limn.>,,.P(R(t;D,m,n) >p) a, we must have s0(k) so(p). The

*following theorem tells us when this is true in terms of k.

. Lemma 4.3.2:

When bum-in is required,

d(s 0 (p),r,k) > 0 (or < 0) if and only if k > p or ( < p). (4.3.7)
0

Moreover, denote Smo = Smo(P), and take E > 0.

If k - p > c, then limitm_>,,m.nd(sm,r,k) = (4.3.9a)

If k - p -c, then limitm_>",m*d(sno,r,k) = ., (4.3.8b)

(Here, limitm>-. sin0 =so)

%, ,,. In addition to this. for k p and 1/2 < t <1, mo-m- > j 1(m) > mtL and

lirn infj2(m)/'Jm=0, we have

. -.. . -. . . . . .. .. ..... .. -A... ... .. . , . . . . .. . . . .
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lil1it-v>Q,'Im-d" I (m)/m,r,k) = -o (4.3.9a)

iniim>Q-flrdO2(fm)/m,r,k) = 0. (4.3.9b)

Note:

1. Equation (4.3.8a) says that our reliability will be achieved with probability 1 if

k> p.

Equation (4.3.8b) says that with probability 1 our reliability will not be achieved if

k < p.

2. Equation (4.3.9a) tells us that if k p, with probability approaching one, as m
-". incresaes, Tj < S(j,k), where mo-ir- >j(m) > n for 1/2 < g < 1. Equation

.(4.3.9b) indicates the range of j(m) where we are not very sure about the

probability performance of this stopping rule.

Proof:

We have smo(P) Smo > 0 when bum-in is required. In addition,

d(smo) = Smo{(1exp(-t))/[(1/r)o(1-k) + smo.(k-exp(-t))]-1) and

d(s0 ) = limitn_> 0 d( Smo) = so,{1-exp(-t))/[(1/r),(l-k) + s0o(k-exp(-t))]-1)

where so= so(p).

So, we only need to show that

(1-exp(-t)) - (1/r)-(1-k)I/(k-exp(-t)) > so <=> k > p. (4.3.10)

The left hand side of (4.3.10) is true
<=> (-exp(-t)) - (1/r)(1-k)}/(k-exp(-t)) > {(1-exp(-t)) - (lr)'(1-p)}(p-exp(-t))

<=> (p-exp(-t)).f(1-exp(-t)) - (1/r)'(1-k)) > (k-exp(-t))°{ 1-exp(-t)) - (1/r)(1-p))

<=>((I -exp(-t))-(l -p)). {(1 -exp(-t))-(l/r)-(1 -k)} >(( 1 -exp(-t))-(1 -k)). ((1 -exp(-t))-(1/r).
, .- (I -pj}

-,- - -.. < =--.4 l(1-ex p(-Q)). (1/r). ( 1 -k)-( 1-p)e( 1- exp(-t))

--X > -(1 -exp(-t))'(li/r).(1 -p)-( 1l-k)*( 1-exp(-t))

S
'0-

a->
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<=> (1-exp(-t)).( 1/r)-(k-p) > (l-exp(-t)).(k-p)

<=> (l/r).(k-p) > (k-p)

<=> (k-p) > 0, since l/r > 1.

Equations (4.3.8), (4.3.9a), (4.3.9b), (4.3.9c) are trivial results of the above

derivation. The prof f hi l.rmaiscoplt.e

Note:

1. For 1 <i(m) =o( m) and j(m) i(rn), (4.3.9c) tells us that 4Im-(Cmo(k)-j(m)/m)

converges toy0 as m - .In addition, the mean an arac of N m(Um:j-j/m)

- K.-.'go to 0. So, the probability,

limitm>,,, P( lm.(Umjt/m) < im.(Cj(k)-j/m),j=1,,*im)

is not clearly given by the large sample theory, as mentioned before. To have a

better picture of

we'll study this limit for small "i(m)"s in section 4.7. How can w~e avoid this

difficulty? Remember that

R(t;D,m,n) ! p

* is true only when at least mo(p) failed defectives are observed and the mo(p) is of

order m. Therefore, we can avoid this difficulty by making the above probability I

by increasing the boundary Ci(k)'s. Using (4.3.9b), Ci(k) can be modified as in

our modified Stopping Rule (S.4.l)

2.When k = p, limitm>2,md(im)m) go--es from positive to negative as j(m)

crosse. mofk). Clearly, for 1/2 <j i 1, 1imitrj>,.4mdO(m)/m) ~aif

limn inf j(mrn =~ 0 and j(m) mo - m4'. In addition, we have

lirflit1 .I..V m-d(j(rn)/m)= -



if n-i I rn >j(m), and lim inf m-P(j(n)-mo) = 4oo.

136
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§ 4.4 Approximating k via Large Sample Theory

An equation to obtain an appropriate "kV is obtained in this section. This equation

is based on the large sample theory developed in the previous sections, especially

Lemma 4,2.1 and Equation (4.3.4), when a suitable boundary for this screening
V.

process at smo(k) is given. We know that, for Stopping Rule (S.4. 1)

Iiixnn_> 0 .P(R(t;D,m,n) !p)=1 for k > p and

Iiimn>-,P(R(t;D,m n)>2p)=O for k < p.

In addition, equation (4.3.4) tells us that

1imn,-,-(R(t;D,m n)>!p) = a

can be achieved if'we can find an appropriate k(p,a,m,n) such that

P(V(s,(p)) < \'(n'r)-d(s0 (p),r,k(p,a,m,n))), 0 < s so) =a.

So, we only need to obtan a k(p,a:,m,n) with P( V(s) < h(s), 0 < s:5 so) =a.

We have, for any fixed s,

V(s) -N(O,hi(s'(1 s)) )2) or V(s)/4(s.(1-s)) -N(0,1). (4.4.1)

For any cx in (0,1), we can easily find a number b~b(a) in (ooe)such that, for any

Pxed s with O<s<1,

P( V(s)/"I(s.(1-s)) b(ax)) =a. (4.4.2)

III terms of V(s) and qkn-r).d(s,k), at so(p), we'd like to have, for n -> and

lim '(n-r) I d(s~~0(p),r,k(p,a,rn,n)) /4I(s.~~)( sm(p))) =b@x). (4.4.3)

Based on these three relations (4.4.1), (4.4.2)~ "nd (4.4.3), Lemma 4.4.1 tells u-- how

to find k. In addition, Theorem 4.4.1 tells us thIat our reliability goal will be ensured if

t1he vitLue of k obtained by Lemmna 4.4.1 is used.
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Lemma 4.4.1:

When ni is large enough, for any real number b, we will have

('i(n'r)) )d(smo(p),r,k(PSX,mf,fl)) - b.qksrno(p).(l lsmo(p))) (4.4.4)

if and only if

kP~,Qm11) -p +~ r.{(p - exp(-t')/(1 - r)}.jbi([rnmso(1-s0 ))+b}I (4.4.5)

where r--i-Vn and so so(p) =limitm.:.srno(p).

Proof:

(Lemma 4.3,2 and its folLowing notes wi-ll be used in this proof.)

L,-: Smo =sm0 (p) and d(smo)= d(s1j,, 0(p),r,k(p,a,m.n)). We have

(,\(n-r) I d(smo(p),r,k(p,cafl,n)) -b(so(p)(-smrO(p)))

<=> d(Smo) - { 4 (sniO( %1-mo)) I b/4m,

In addition

linmi_,d(sr.) = so.{ 1 exp(-t))/[( 1/r).( I-k)+s0*(k-exp(- ))1- 11.

Using these two equations, for m being large enough, we havi

d,,o- {N'(1-so).So)).bl/4M

(1.ex(-t)/( lr)(1 k)+ so.(k-exp(.-t))) -l - hk(1-So)so))-b/4rn

(1 -exp(-t))-(I/r)'( 1-k)-s0 '(-k-exp(-t))-( ( /r).( I-k)+s0 .(k-exp(-t))}. (4(( 1 -s0)/sO)j- b/Jm

-* k'(lIr - s)+lI-exp(-t)-1/lr + so.exp( ~

-k.(1/r - s).(V((l-s0 )/sO))-bfiJm + (i/r -s-exp(-t))- (I-so)/so)).b/\Im

k.(l/r-s0 ).( l+[I((l-so)/so)].b/4ni)

k - (hr -so-exp(-t;)/(l/r -so) - fl..exp(-t))/{(1/r -so)*(l+L'I((l-so)/sO)]-b/Ir)$. (4.4.6)

Further more, we have

(1k -so'exp(-t))/(h/r -so) =(I - r-s0 .exp(-tQ)/(1 - r-s0 ), (4.4.7)
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={(p-exp(-t)) - r.( 1 -exp(-t)).exp(-t) + (l-p).exp(-t) i/(p-cx p(-t))

(p.( i-exp(-t), - r'(l -exp(-t)'-exp(-t)) )/(p-exp(-t))

=(1 - exp(-t )*(p-r-exp(-t))/(p-exp(-t)), and

i p-exp(-t) - r*(1-exp(-t)) + (1-p))i(p-cxp(-t))

=(1 - exp(-t)).(1- r)I(.O-exp(-O\)

(I - r's 0*exp(-t))/(l - r-s0 )

= (1-exp(-t).(p-r-exp(-t))/(po-exp(-t)) Li (11- exp-)(1-r/-e (t)}

= y-r-ex3(-))/L1- r)

=p+ r.(p - (~),AI1 (4.4.8)

In addition,

(1-exp(-t))/[R hr -S0))-( 1+{ ((1-sO)/sO)) .bI4nm)]

= [r { p-ep(-t)/~-r)} ]I 1+I((-s 0)s0)*bIIm)(4.4.9)

So, using (4.4,6) -(4.4 9~), we have

k(p,cc,ni,n) = k

-p + r(p - exp(-t))I(I - r)].II1 - 1/(1+[k(1l-sO)/sO)).bflm)]

~p [r*(p-exp(-t))/(1 - r)].[ { k(1-so)/s0 ) ) .btI/4n(1+ ((( l-so)/s0 ) I.bI'm)]
=p + Lr*(p - exp(-t))/(1 - i)1.[b/( 4 [r-sd/(1-s0 )I~b)I (4.4.10)

The proof of this lenima is comipleted.
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Note:

In order to study k(p,ct,m,n,), we'd like to write it as a function of r=m/n, i.e.,

k(r). (The behavior of k(r) will be studied in the following sectior,,.) Denotte

so = so(p) [ r.(l-exp(-t)) - (l-p))/r(p-exp(-t))}. WV? have

sJl( 1-so) r-(1 -exp(-t)) - (I1-p))]/((Il-p).(1 -r)).

In addition, if we define

k(r) =p + (p-exp(-i)).b/[b.((1.. ')-Dl+J~/ p)[lep-) ((1 -p)/r)

-(r'(1 -exp(-t)) + (-p)]1

we can see that k(r) - k~pxa,m,n).

A ~From (4.4. 10),

-,-k - p + [r.(p - exp(- t))/(l - r)] (b/{ !nr r.(l-exp(-t)) - (-p)/

f(1-p)*(1-r)11±b} I

-p + (p - exp(-t)).b/(b.(1-r)/r + 'i[n'[(1-r)/rj*[r.(1-exp(-t)) - (l-p)}1I-p)]).

-p + (p-exp(-t)).b / fb-((1/r)-l) + ' [(n/I-p))*[(1-exp(-t)) - ((1-p)/r) -

r.( I-exp(-t)) +( l-p)]] I

-k(r). (4.4.11)

2. The square root term in k(r) is positive if r > (I -p)I(1 -exp(-t)). Its denomi~nator is
positive if (I1-p)/(1 -exp(-t)) < r < 1 which is the range of r of interest to us (burn-in

is required if (I -p)/(l -exp(-t)) <r < )

3. kr) p-hen n is sufficiently large and bum-in is required. This is a trivial result

from (4.4.11).

From Lem-ma 4.4.1, we have the following theorem which tclls us that our
reliability goal, P(R(t;Djn,n): :p) Nx, is achieved if t value of k is obtained by using

I-m tin (.,5 . *.re provngdhstie fmlcts c

S%
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6Z: a standard normal random variable, (4.4.12)
z~ s te uper100-(a percentile of Z, (..3

b(cc,mn) = zaC/(smO(p)(-sjyjo(p)), (4.4.14)

I b(cx,in)I { lm-s/( 1-s0)]-ib(a,m) } . (4.4.15)

a Theorem, 4.4.1:
Under Stopping Rule (8.4.), if k is defined by Equation (4.4.15), then

limiitn-> P( R(t;D,m,n) p) a (4.4.16)
- Proof:

VUnder the StoppDing Rule (S.4.)- we will iannre th1w fira t 4 111 _ '-1,T.M kili-.

r first in
1
-'failure times of the defective itenhs), that is

limit,,>, P(R(t;D,m,n) t p) =P(V(s) (n-r)*d(s,k), Ocscs0 (p))

-P(V(s 0 (p)) '(n-r).d(s 0 (p)))
- ~P(V(smu(p)) 5 +(nr)J-d(smo(p),r,k(p,a,m,n)))

Using

Q(n-r)j} d(smo(p),r,k(p,ax,in,n)) - b(ajm)eksmo(p)e( bSmo(P)),

the expression above is equal to

liflitn->o. P(V(snio(p)) b(ax,m).J(smO~p)'(1-smO(p)) T I z )=.

The proof of this theorem is completed.
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§4.5 The Behavior of k(r)

I he following Lemma tells us the behavior of k(r). From the discussion below,

we can see that k(r) is a U-shaped function for 0 < (1-p)/(1-exp(-t)) < r < 1. Note: The

behavior of k(r) for r from 0 to (1-p)/(1-exp(-t)) is not given, because no bum-in is

required if r is in this range.

Lemma 4.5.1:
-- vDefine: ro -- (I-p)/('7-exp(-t)).

There exists a unique value rn such that

k(r, decreases on [r0, rn] and increases on [rn,l].

Moreover. iim _ r = ( -pn)/(1 -exp(-t))} 1/2 =ro.

I N" 6Proof:

Define

g(r) = b,((l/r)-1) + {'(n/(l-p)))-[(1-exp(-t))-((1-p)/r)-r.(1-exp(-))+(1-p)j. (4.5.1)

Function g(r) is the only part of k(r) which has r in it and g(r) is the denominator in -he

second summation term of k(r). The function k(r) increases as g(r) decreases, ant vice

versa. Let's investigate g'(r) first.

g.(r)-b/r,+ 1/2),]n/( I -p))[(1-p)r 2-(1 -exp(-t))]/',f[(1-exp(-t))-(1-p)/r-r.(1 -eAp(-t))+

-p )J. (4.5.2)

The sign of g'(r) is mainly determined by the second summation if n is large enough.

For 0 < r < 1, g'(r) is negative if its second summation is negative, since its first

[' summation is negative. The second term of g'(r) is negative if and only if
(!-p)/r 2 < (l-exp(-t)) (4.5.3)

(1 -exp(-t))-( I -p)/r-r-( 1-exp(-t))+(l -p) > 0. (4.5.4)

inequality (4.5.3) is true if and only if

,5Z
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r > vj (-p)/( 1-exp(-tfl} = ro. (4.5.6)

Inequality (4,5.4) is true if and only if

(-r)- Ir( -exp-t))..(I-p))l/r >0c=>

r > tO. (4.5.7)

a' Recall that (4.5.7) is the necessary condition for bumn-in,

So, for <ro< r < 1, k(r) increases (or g(r) decreases) as r increases.

F'or 0 r < to, burn-in is not required.

r For to <c r < to, it is clear that k(r) decreases (or g(r) increases) as c increases, but the

-, behavior of k(r) is not clear for r near ' ro.

Let's investigate the behax~or of k(r) in a neighborhood of 4ro.

The derivative g'(r) is poszuitve

<=~> (1 /2)1',/(&( 4 -p)).[( 1- pY'r2-(l1-exp(- t)i/N't( 1-exp(-Q))-( 1-p)/r-r*( 1-exp(-))±( 1-p )jI

6 <=> (1 -p)-(1 -exp(.).-)), 2  2.bU ((l1 p)/n)W [( I-exp(-Q))-( !-p)/r-r'( I-exp(-Q))+( l-p)]

Definz-

w (r) = (1 -exp(-t))-( 1- p)/r-r*( -exp(-t))±(lI-) (4.5.8)

We haveK g(r) >0
<=> (1 -p)-(1 -exp(-t).r 2  _ 2.b4(( 1-p)/nfr-Jw(r), (4.5.9)

w((I- p)1(I -exKp(-t))) = 0,

wC((-p)/(1-exp(-t))) = (1 - exp(-t)) - q(1-exp(-t))ri(1-p) 4 (1-p)-A4 (l-exp(-t))+(1-p)

The derivative w'r 1p/2-(l-expCt)l is positive and decreasing for

0KPAI- x--) <( pll e -t) I2. So, <w(r) is positive and increasing for



(1-p)!(l-exp(-t)) < r < i/(1-p)/(1-exp(-t)). In addition, (1-p)-(1-exp(-t))r 2 , decreases

as r increases from (1-p)/k 1-exp(-t)) to {(l-p)/(1-exp(-t)) 1/2. So there is a unique

r. > 0 such that g'(r n) = 0. Here, rn is the point where g(r) achieves its maximum and

where k(r) has its (local) minimum. In addition, as n -> 0-, the inequality (4.5.8a) can

be written as (1-p)-(1-exp(-t))r 2 > 0. So, r. -> {(1-p)/(l-exp(-t))) 1/2, as n->o. The

proof of this lemma is completed.

The definition of k(r) implies that

limr-> k(r) (4.5.10)

P- + limr, > (p - exp(-t))b/{b-(l-r)/r + [n-[(1-r)/r].[r.(l-exp(-t)) - (l-p)/(1-p)] }
0

S.' In addition,

k(ro) = 1. (4.5. 10a)

The range of r such that p < k(r) < 1 is the range of our interest. If k(r) 1 1, then the

screening procedure designed in this and the previous chapter will never be stopped.

(In order to achieve our reliability goal, k(r) was required to be greater than p.)

Lemma 4.5.2:

-,. Assume ro < 1/2. For a fixed and sufficiently large n, the appropriate range of r for us

to use k(r) as our k in this burn-in procedure is from ro to min{r2,1 } where r2 is the

largest solution of k(r)=l.

Proof:

First, for a fixed n, let's solve k(r) = 1.

- p = (p-exp(-t)).b/(b-(l-r)/r + J(n/(1 -p)).[(-r)/rJ[r(l-exp(-t))-(1-p)]])V.. (1-p)-{ b'(1l-r) + Y[(n.(1-p)).(l-r)r]r'(-XP(-t))-(Il-p)]] } = (p-exp(-t)).b'r

-'.-,-- - - - - - - --. . - -. -4-

• .. , . " '.""" "".............._..... -.........- --. -..... ,..... . . . ..... •."."','..'
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b'[r*( 1 .exp(-t)) - (,,-p)] [n( p)[1r'1[~ -x(t)(lpI

b2[r(l-ep(t) -I.1p)]
2 

=(n.(1 -p)).[( 1-r).r].[r.(1-exp(-t))-( l-p)I (4.5.11)

* .b7'[r'U-exp(-t)) -(1-p)] =ne(1-p).[(1-r).r]

b2'[r#(I-exp(-t))/-'1-p) - 1] = n'(r-r2)

r- r.I~l- b2.(1-exp(-t))/((1-p).n)] b2In =0. (4.5.12)

Define

B 1- b2 *(1-exp(-t))/((1-p)-n), C = 2n

ri [B - <(B32 - 4.C)]/2' and r2 =[B + 4~(B2 - 4-C)1/2.

ri and r2 are the two roots of equation (4.5.12).

It's trivial that ri < 0< (1-p)I(1-exp(-t)), (4.5.13a)

r2 I - b2 .(1-eXp(-t))/((1-p)-n) + q'Ii- b2 .(1-eXp(-t))I((1-p).n)] 2 + 4'b2/n ))/2

t I - b2 *(l-exp(-t))/((1-p).n) + q1{[1- (b2/n) 2-L(1-exp(-t))/(1-p))-2]] 2 + 4.(b 2/n) 2 .

< [ 1- bz*(1 -exp(-t))/((1-p).n) + I-1. (b2/n).((1-exp(-t))/(l -p))-21 + (b/)

= 1- b2. (1-exp(-t))/((l1-p).n) + (b2/n) + (b2ln)-4~(( 1-exp(-t))/(( l-p)-l)

= 1- (b2In). I (-exp(-t))/((1-p) - 11 - '1[( 1-exp(-t))/(( l-p)- 111 (4-5.13b)

< 1 if (I1-exp(-t))/((1-p) > 2 when bum-in is required.

The above results implicitly tell us that (4.5.11) has exactly three roots: one is ri, one

is ro and the last one is r2. For n large enough, we have
rI < 0< ro < r2 < 1. (4.5.14)

So, this lemmta is proved.

V I

. ....
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The relation between k(r) and r is sketched in Figure 4 for ro r r2. The

function k(r) has its minimum at rn and k(rO)=k(r2)=l.

k-i

k(r)

k = p . ........ ......... . .. ....... .. ............................. . ...... . . ..... . .

0?
- " ro r r2 r=1

Figure 4: The relation between k(r) and r.

.- From equation (4.5.2), the right hand side limit of g'(r) diverges as r approaches ro

i.e.,

limit r -> rO g'(r) =+o. (4.5.15)

So, the slope of k(r) at r r0 is -,

S

Note:

If we look at the above figure, we can see that the behavior of k(r) is very strange

for r in [ro,rn]. The reason is that we intuitively expect to have small k(r) when r is

small. However, for r in this interval, k(r) grows as r decreases. Using larger k(r)

means that a larger stopping time sequence {Ci(k)) is used. So, this rule tells us to

eliminate more defective items when we start with fewer for r in this range.

S,""

Vo.'

0 -
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- When the given range for r, say [rl,ru], falls in (ro,r2), i.e.," ro < rl < r, < r2,

we obtain a conservative rule by taking

Sk = max{ k(rl),k(ru)).

W-6.The reason is that the sequence of the stopping times (Ci(k), for i=1,2,...,n-1 ) is an

increasing function in k. In addition, we observe that k(ro) = 1, but unity is not a

feasible value for k. We shall see in the next section that r must be bounded away from

ro.

MMD

A% ".
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§ 4.6 How close to ro can r be?

The derivation of the formula for k(r) as a function of n in Section 4.4 depends on
1 the assumption that burn-in can not be stopped at any stage j(m) where (j(m)/mlP) -> 0

(1/2< t <1). The derivation also depends on studying the probability of stopping in a

neighbourhood of me (mo(r,m)) defined by (1.7.3). Thus, if (mo(r,m)/mL) -> 0

(1/2 < p. < 1), there is an inherent contradiction in the derivation. It is obvious from
(1.7.3) that, as r -> i + , mo(r,m) -> 0. Hence, we must bound r away from ro in order

for formula (4.4.5) to be valid. We shall obtain a lower bound r*(n) > ro such that for

r > r*(n), (4.4.5) is correct. For ro < r < r*(n), some formula for k(r) other than that0

given in this thesis must be used. We shall also find k(r*(n)). This value will serve as
an upper bound on k(r) for r*(n) r < rn as seen from the discussion of Section 4.5.

First of all, define

9'- f(r) = (r/(1-r)).(1/b 2).((p-exp(-t))/(1-p)),

g(r) = (r'(l-exp(-t))-(l-p))/(p-exp(_t)),

e(r) = f(r)'g(r),

m = nor,

mo(r,k) = (me(l-exp(-t))-n.(1-k))/(k-exp(-t)),

k(r) = p + [r.(p-exp(-t))/( 1-r)]* (b/{b+,((nr).(r.( 1-exp(-t)-(1-p))/[(l-p).(1-r)])])

(as given in (4.4.11).

So, we have
2" ' 1-n) = (p-exp(-t))/(1-exp(-t)),

rlfl-0 =.lit

Nq.,

M) 4e
... ...... ¢, ..*...' ',,,:-. ,~,,. -o. ,. ,%,"5 ".- ..-£ . /. ,.. .' ,, ,., :.,,r, : . ........ .. " i 5" '... ..- .... .. ..,2£"
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mo(r,k(r)) - n{(g(r) -

Consider the case rno(r,k(r)) = a*nP, where a is a constant and 1/2 _. p < 2/3. We have

(nl-P) fg(r) - (r/(l-r)).[(1+g)/(4f(r).g(r))].(1/ 4 n) ) = a, or

(n 1-p).g(r). (1 - (r/(1-r)). [(1 +g)/(fl/ 2(r).g 3/2(r))].(1/ 4 n)) = a. (4.6.1)

If n is large, we car, see that

g(r) - A/(n(l'3)) + B/(nu) (4.6.2)

where A and B are two constarits, and u > 1/3.

Replacing g(r) in (4.5.1) by A/(n(113)) + B/(nU), we have

A.(nl-p-1/3).{1-(r/(1-r)).(1I/f),(!/A( 3/2))-[1 - B/(Aon(u-(tt 3)))]( 3 2)-q9 n(/ 6)/n(3/6)) = a,

N' where q is a constan+. (4.6.3)

Since a is finite, wz need the coefficient of the leading term to be zero, i.e.,

1 -(r(1-r)).(1/ ]f)*(1/A(32)) 0 and (4.6.4)

u l-p, (4.6.5)

since we need the power of n for the second term, namely l-p- 1/3-u+1/3, equal to 0.

Using (4.6.4), we have

(r/k( 1-r))(1/ 2)-b.[(1-p)/(p-exp(-t)]('/ 2 ).( /A(3/2)) = 1,

and using (4.6.12), we get

b/A(3 /2) = 1, or

A = b(213). (4.6.6)

Using g(r) A/(n(1/ 3)) + B/(n(1-P)) in (4.6.1), we obtain

[A.(n-P - /3)+B]• { (3/2).(r/(1 -r))-( 1/\f)(B/(A(5/2)*n(1-P-1/3)) + *) = a.
So,

S.
(3/2)-(r/(1-r)).(1/,lf).(B/(A(3/2)) - a , (4.6.7)

.- \W know that (4.6.7) is true if 1/2 5 p < 2/3.

Using (4.6.4) to solve (4.6.7), we have

-,
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B (2/3)-a. (4.6.8)

Let

r = rO±+ (4.6.9)

'We have

g(r) =g(ro + = r'1ep-)-lp)(-x(L)+ D'(l-exp(-t))/(p-exp(-t))

~J(I-exp(-t))/(p-exp(-t)),

A/nl-) + B/(n 1 -P). (4.6.10)

In ,iddtioni,

0

=roi(1-ro) +~ a/(1-ro)2

=(ro/(1-ro)).(1 + D/(1-ro)) and (4.6,11)

-\~/lr)- "kro/(1-ro)) + (1/2).a/(ro'(1-ro))

= '[(1 -p)/(p-exp(-t))] (4.6.12)

From (4.6.6), (4.6.8) and (4.6.12), we get

Dnn- [b(213)/(n(I 3)) + (2'a/3)/(nl1 P)]/[(1-p),'(p-exp(-t))], let (4.6.13)

=CI(ni('/
3))+D/ (nI-P), for appropriate C and D. (4.6.14)

A effective lower bound of r is obtained:

r*(n) =ro +r Di,

(1-p)/(P-exp(-t)) + [b(213)/(n(1/3 )) + (2.a/3)/(nl1 P)]/

[(1 -)/(pexp(Q)].(4.6.15)
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What is k(r*(n))?

k(r*(n)) =p + [rl*.(p-exp(-t))/I(rl*)] - fb/[b+((n-rl).(r.(1-exp(-t))-(1-p))/

- p +(p-exp(-t)). {[(1 -p)l(p-exp(-r))] +[D.( 1-e; p(-t)2/(p-eXp(- t)) 2 ])

hi I b+'[ n.(ro/( I -ro))- ( I1+a/(ro ( I -ro))) -( 1I 1 -p)) (D?( -exp(-t)))I

=p + ([(l-p)±[i).( 1-eXp(-t)2/(p-exp(-t'))

1/f1 +/[n~3. 1 QJ~ro( 1ro))). I-exp(-t))/(b2.(p-exp(-t)))]

-p+ ( (l-p)+[D*(1-exp(-t) 2/(p-exp(-t))]).

[b-(U(p-exp(-t)))/(1(l1-exp(-t)).(V/C). n(1/ 3)]'[l1-DI(2ri( 2 .-p))]

~ - p + ([(l-p)+[C/(n(13 ))+D/(ni)1.(-exp(-t)2/(p.exp(.t))]}

Sr { (b* [d(p-exp(-t)))/(/( 1 -exp(-t))1/[(qIC).n(l/3)])

p + (1-p) *b*(I(p-exp(-t)))/(((1-exp(-t)))(4C)n(1/3)I (4.6.16)

Thi1s, (4.6.16), is a decreasii~g function in C, i.e., k(r*(n)) decreases as r*(n)

increas.es.

So, if r*(n) < r < r1n we can use (4.6.16),

k = k(r*(n)) = p + (1p rr'pex(t/"t'1-xp(\,J,\,J-nI/

=p + (1 -p) -b-(I(p-exp(-t)))/( (I~(1-exp(-t)))*(b( 13 ).n(1f3) 1. (4.6.17)

So, use k=max( k(r*(n)), k(r.)) where r,. is the upper bound of r to obtain a

cotiservative rule.

'N A
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Sununarizing the above discussion, wet have the following th, orem,

Theorem 4.6.1:

Suppose D [b(2!3)/(n(1/3)) + (2 .a/3)/(nl-P)j/[(l.,o)/(p-exp(.t))j for some positive

NK, number a and 1/2 < p < 2/3, and r, is an upp-r bound of r. If r*(n) < r c ru ten

k=max(k(r*(n)), k(ru)) will give us a conservative rule, with k(r*(n)) given by

(4.6.17).

I .

n

-°
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§4.7 Limiting Probability of Early Stopping.

Lemma 4.3.2 tells us that, for stopping r,'e (S.3.0), whether PtR(t;D,m,n) p) >

c is trut or not mainly depends on the first several observed failure times of the

defective items if k > p and m is large enough. In other words,

lirit n _.> P(R(t;D,m,n) _ p) > ct

depends mainly on
lirnitm->.P(Ui m < C1 (k), -, Ui:n < Ci(k) ) for i 1,2, *..,j(m) (4.7.1)

where j(m)/mJ ->0 and 1/2 < i 1.

Let's evaluate the case j(m) 1 first. In §3 8, we studied P(Ui. m < Cl(k)) for a

given m.

n, CI(k))
..- : .. =limitn>. -, I (I - (1-exp(-t))/[(n- 1).(1 .k)+(1-exp(.t))] }m

Klinitn_>- I [I - (1/m)-(l-exp(-t))/[(n-1).(lmk)/m+(lexp(_t))/m]}m

' - exp{ r(1-exp(-t))/(1-k) ,~where r =limitn_>, rr/n and 0:< r < 1.

': 'D% D e i n e

'""",.-.g(r,k) =I - exp { -r.( 1 -exp(-t))/( 1 -k))} (4.7.3)

We have the folowing lemma.
-;':-2Lemma 4.7.1:

61 11. If bum-in is required (and n is large enough), then
, ,).,.g~r,k) _>limitn_>,,ptR(t;D,m,n ) >p).

2. If r is fixed, then

g(r,k) is an increasing function of k with l-exp(-r(1-ep(-t)) ),1 as its range.0sisrne

0_

* 1*a_ ,' , - . - -- r A ? ' r P ~ X \. t J J . n . n , s . A k M h .
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3. If k is fixed, then g(r,k) is an increasing function of r.

Note: This is a trivial lemma and the proof of it is omitted.

For j=2,

lifl1t-> P( Ui:m < Ci(k) for i=1,2,...,j)

- imitn->- 1-(1-CI(k)))rn- - m.CI(k).{ 1-C2(k))ml

- 1-exp[{-r'(1-exp(-t))/( 1-k)) - r*(1-exp(-t))/( 1-kl) )exp (-2*r*(1-exp(-t))/( 1-k)) (4.7.4)

ILK.. For j3

limitn->- P( Ui:m < Ci(k) for i=1,2,...,j

=1limitn->c.,,I - (I1-C 1(k)) I m-m.C 1 (k)- I1 -C2 (k) ) mT- 1 -rno(m- 1).(1-C 3 (k))m-2 .{C2(k).

C1 (k)-( 1/2).C 1 (k)24

I - exp{ -r'(1-exp(-t))/( 1-k))- {r.( I-exn(-t))/(1 -k) 1.exp (-2-r(1-exp(-t))/( 1-k))

-(3/). {r-(1-exp(-t))/( 1-k)) 2. exp (-3.r.( 1-exp(-t))/(1-k)) (4.7.5)

For '-=4,

imitn->v, P( Ui:m < CI(k for i11,2,...,j)

- iritn->-1- (1 -C l(k))) nA-m.Cl (k) (1 1-C2 (k))- M- .(m1).(l-C3(k))m-

2. C2 (k)'C 1(k)-(l/2).Cl(k)2 ) -m.(m-1).(m-2).f I(k).C2(k).C 3(k)-

(1/2)*C 2 (k).Cj(k)2 ] - (1/2)'[C 2 (k)2*C1(k) - (1/3)*Cl(k) 3])

1I exp {-r.( I-exp(-t))/I-k)) - r.(1 -exp(-t))/(1 -k)) *expj -2*r'(1 -exp(-t))/(1-k)) -(3/2).

(r.( I-exp(-t))/( 1-k) }2 .exp{-3.r'( 1-exp(-t))/( 1-k)) -(19/6). {r.( 1-exp(-t))/( 1-k) )3.

exp(-4 *.1~p-)/1ki 476

%1: Define

A =r*(1-exp(-t))/(1-k). (4.7.7)
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~Summarizing the above results, we have

' 'liniitn-> . P( Ui:1m < Ci1k). for i=1,2,--,)

'¢" = 1 Pn- A )c t - A ' "^ - ¢1. A9 "*AN - . . . ..

A.A

i 1-a(1)-exp(-A) - a(2)-A-exp(-2-A) a(3)-(3/2)-A2.exp(3.A) a(4)$(19/6).A3o

4,

--. ,-2.-. xp(-,1A ) - o o

, =i~ ~ Jl<i x(-' -t'Y-2._/A J- LN2.eXp -. A) - A3.-exp(_4-A" ...

. ,;, = 1 -exp(-A).{ 1 + A-exp(-A) + (A-exp(-A))2 + (A-exp(_A))3 ...

,,."-=1-exp(-A)/[1 - A-exp(-A)]. (4.7.8)

.... .- Tis i an pper bounid Of limnitn_>o.P(R(t;D,mn,n ) 2_ p) if we allow this burn-in

_"- "process to stop at the very beginning. On the other hand, we corlif.cture that -we should
ummrbe iing ab costant I < q < cc such that

7-':-ia(i) <; q! for i =1,2,3,-°, mlJ- with 1/2 <.ut < I and
V limitn->OoP(Ui:m < Ci(k) for i=1,2,.*,)

=qoe 1- (1exp(-A)/[1- a.-Aexp(-A)-. (4.3 S)
'This is a lower bound of limitn_> P(Ui: m < C;(k) for i=l,2,f,.mlls).

processIf th o t at te eof inequality (4.7.9) is positive for some k in (0,1), we should

be able to find a suitable k, say k*, such that

":.:.the right hand side of (4.7.8) o t. (4.7.10)

In this case, i is clear that

limitn.>c P( Ui:m < Ci(k) for i=1,2,--,j+1)

S,.

Tis limitn>oP(ui:m<Ci(k) for i=l,2,°,j) -

1 ';' a J)- {r-(1-exp(-t))/(1-k) }j- l-exp {-j-r-(1-exp(-t )) /(1-k ))}, (4.7.11)

.

And, we can conclude that
Sh e h t aj ri(-exp(-t,)/(-k) J 1.exp-j-r-(-exp(-t))/( -k)) (4.7.12)

b..

Inti csitiOlerta
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is close to 0 for moderate a. That is, for any error bound e, there exists a moderate D

such that

limitn_>,,, P(Ui:m < Ci(k) for i=1,2,-°oa)

*",i'- - limitn.>- P(Ui:ni < Ci(k) for i=1,2,.,mt) e (4.7.13)

In addition, if k > p, we'll have

iimitn>,, P(Ui:m < Ci(k) for i=,2,ooo,)

limitn.>00 P(Ui:m < Ci(k) for i= .2,...,mt)

f= limi:_>, P(R(t;D,m,n) p) (4.7.14)

The following argunern shows k > p when k is derived from early failures. This

0' tells us that the derivation of k in this section is not close to p no matter how large n is,

i.e., the stopping rule obtained by using this k will be too conservative. From (4.7.8),

the upper bound on the confidence is given by

Ub(A) = (1-exp(-A))/(l-Aexp(-A)) where A is given by (4.7.7).

-. Note that the first derivative of Ub(A) is

ub'(A) = { (exp(-A)).( I-A'exp(-A)) + (1-exp(-A))-(exp(-A))-(1-A) }/(1-A-exp(-A)) 2

- ((exp(-A))[l-A-exp(-A) + 1-exp(-A)-A + A-exp(-A)] j/(I-A-exp(-A)) 2

- {(exp(-A)),.2 - ( A+exp(-A) )]}/(1-A-exp(-A)) 2 . (4.7.15)

(d/dA)[A+exp(-A)] = 1 - exp(- A).

So, A+exp(-A) is an increasing function in A. In addition,

Ub'(A) > 0 for A < A* where A*+exp(-A*) 2 (A* < 2 but near 2), and

ub'(A) < 0 f3rA > A*. (4.7.16)

If A < 1, then A.exp(-A) < exp(-A) or 1 - A.exp(-A) > 1-exp(-A). So,

ub(A) < ' if A < 1. (4.7.17)
., FLrthc nnore,

I?,M
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Ub(1) 1. (4.7.18)

Hence, there is a solution A l < 1 of Ub(A) = a. (4.7.19)

-- Also a solution A2 > 2 of Ub(A) = a. (4.7.20)

In the range of interest, r > (1-p)/(1-exp(-t)) or

A > (1-p)/(1-k). (4.7.21)

Note: k p <=> A ! 1. (4.7.22)

So only solution A2 > 2 of Ub(A2) = a is of interest.

For any r in the range of interest r > ro, define r = eoro with e > 1. We have

1 - k = (r/A2).(1-exp(-t)) = e°(l-p)/A2. (4.7.23)

VSo, k decreases as r (or e) increases and a conservative k is that for the minimum r.

Suppose the minimum r is near ro and i.e., e - 1, then from (4.7.22), we see that k >

p. If P(R(t;D,m,n) _ p) increases with k, then we need k > k' where k' is given by

(4.7.23), and k' > p when e is less then A2.

Al-AN

* a,
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§4.8 Use k p+ O(1/,/n)

Let k I be the "'" obtained from (4.4.5) and k2 be the "k" derived by equating

_ (4.7.12) to ac, if a solution exists. The comparison about the performances of the

burn-in processes based on k1 and k2 is given and k1 is recommended as the better

choice.

- ~ Let's consider the case that k2 is used. From Section 4.7, we know that k2 > p.

. -In this case, we will have about 100'(1-o)% chance of having a lot with most of its

defective itzms still remaining after bum-in and have about 100*o(% chance of having a

2$:5" lot with many fewer defective items than (m-mo). So, if k2 is used, the quality of any

lot after burn-in has two extremes: this lot can be very bad with most of its defective

items still sitting there and the duration of this bum-in is very short; or this lot can be

too good with many fewer defective items in it and with itn duration of burning-in, -

ln(I-so(k2)), longer than what is required. Although we might still achieve our

reliability goal if k2 is used, the over all quality of the lots after burning-in is not

consistent and the duration of burning-in would tend to longer than it truly needs to be,

i.e., (so(k2) > so(p) if k2 > p.

- If k1 is used, burn-in will be stopped approximately when mo(kl) defective items

- are removed from a bun-in lot. The quality of each after-burn-in lot is very similar.

For a lot put on burn-in, the number of the defective items remaining in it is close to

m-mu(k) after burning-in. In this case, eac:h burn-in process also tends to stop at the

* same time -ln(1-su(kl)). In addition, so(kl) is getting close to so(p), the lower bound

of ,,0(k), if I is getting larger.

mu,

An AAA - - - *A-A- -A" *k't~ A tA p M~ ,
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:'"' Based on the consideration about the consistency of the qualdity of each after-burn-

.2.. in lot and the possible duration of burn-in, the k derived by using (4.4.5) is

recommended.

"

-ft..

I.
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CHAPTER V
g',1 NUMERICAL RESULTS, SIMULATIONS, AND COMPARISONS

§5.1 Introduction

In this chapter, the achieved confidence level and the expected duration are

computed (Procedure 0 and Procedure I) or simulated (Procedure II) for each
procedure. The same true rn and a set of assumed "m"s are used for each procedure,

.., too. So, we can see how sensitive the confidence and the duration of bum-in are to the

assumed value of m. In addition, we can make comparisons among these procedures.

' For each procedure, two sets of (n,m) values are used. One is for a small lot where

"'.. n equals 400 and m ranges from 32 to 352 in steps of 32, and the other one is for a

large lot size where n equals 4000 and m ranges from 320 to 3520 in steps of 320. In.4

this chapter, we use p=.99, ax=.99, and 1-exp(-t)=.99, i.e., t=4.61 for all the

aumerical computations and the simulation runs. For Procedure 11, 2000 simulations
* were run. We can compare the results in each table, and see the differences among

these procedures and see the differences in each individual procedure when different

(assumed or true) numbers of defective items, m, or burn-in lot size, n, are used,

160

.-
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§ 5.2 The Numerical Results for Procedure 0

"" The tables in this section show the numerical evaluation of the performance of

Procedure 0. Tables 1 to 5 tell us the performance of Procedure 0 when the lot size

n=400 with the assumed (or true) number of defective items m ranging from 64 to 352.

Tables 6 to 10 tell us the performance of this procedure when the lot size n is 4000 with

in ranging from 640 to 3520.

Notations used in tables:

" n: the burn-in lot size.

mi: the true number of the defective items in a bum-in lot.

mest = met: the assumed number of the defective items in this bum-in lot.

Om0 = mo: this number of defective items must be eliminated through burn-in to

achieve our reliability goal.

mestO = mesto: this is the number of defective items which we intend to eliminate

through bum-in to achieve our reliability goal when the assumed m is mest.

t: this is the required after bum-in service period.
t-delta: this is the stopping time of Procedure 0. It is denoted as A in Chapter 0.

S.r," confidence: this is the probability of achieving R(t;Dm,n) _p, P(R(t;D,m,n)_>p),

when this stopping rule uses the stopping time which is derived by an assumed

value of m.

O.

If we look at Table 1 to Table 5, we Lan see that 'confidence' increases steadily as

the assumed value of m increases. If m is under estimated, we will not be able to

achieve R(t:D.m n)>p with the desired probability a, i.e. we will be unable to achieve

S0. e. .. I
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our reliability goal. The chance of achieving our reliability goal is getting worse if the

assumed value of m is farther below the true value of m. If m is over estimated, the

qucaity of a lot after bum-in is higher than the required quality with a longer duration of

burn-in.

If we compute the difference m - mo, we have that m-mo is a decreasing function

of m. This tells us that fewer defective items can remain after burn-in if we have more

V, defective items in a given bum-in lot. Here, mest-meSto = 0, if mest is greater than or

equal to 320. The difference mest-meto has a great influence on the stopping times. If

we check the column of t-delta, we can see that t-delta increases steadily as the assumed

value, mOst, increases and has a jump when the value of the difference mest-mesto

changes, for example, when most goes from 96 to 128

mesL-meSto changes from three to two. In addition, the stopping time t-deha has a great

jump from mCs=298 to mest=320. The reason for this jump is that the difference m- t-

meito changes from 1 to 0.

If we look at Table 6 to Table 10 (the large lot size, n=4000, case), we can see

results similar to those described in the previous paragraph. In addition to these, we can

see another two features in these tables. The first one is that 'confidence', the chance

for us to achieve R(t;D,m,n)_ p, is very sensitive to the assumed value of m if it is

under estimated. The second one is that t-delta is significantly smaller than the t-delta in

the first five tables. This tells us the fact that the duration of bum-in will be reduced if

the lot size is increased br a fixed ratio (rn/n).

[o
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Table 1: n=400, m=64, mo=61

IL .. .. t 'e't 0 t-delta confidence

32 29 3.62492 0.908605

64 61 4.33606 0. 990000

96 93 4.74737 0.997622
126 126 5.67589 0.999926

160 158 5.90027 0.999969

192 190 6.08341 0.999985

224 223 7.31654 1.000000

25, 255 7.45031 1.000000
288 287 7.56828 1.000000

N
4  

320 320 10.36849 1000000
1R2 4 ' -.c379 J000000

Table 2: n=400, m=128, mo=12 6

, .. - r stO t-delta coofidrnce

32 29 3.62492 0.333892

* 64 61 4.33606 0.764306
96 93 4.74737 0.899116

128 126 5.67589 0.990200

160 158 5.90027 0.994565
192 190 6.08341 0.996727
224 223 7.31654 0.999906
256 25;5 7.4503± 0,999937

288 287 7.56828 C.999955

32,1 320 10.36849 1.000,'U0', "i_. 52 10J46379 _I-. OQO0

Table 3: n=400, m=192, mo=190

must mestO t Idt a confidence

32 29 3. 6249. 0.111856

64 61 4.33606 0.539644
96 93 4.74737 0.266681

: 28 126 5.67589 0.971015

O i0 158 5.90027 0 .983743

192 190 6.08341 0.990000

224 223 7,31654 0.999690
Z , 56 235 7.45031 0.999790

288 287 7.56828 0.999851

320 320 10.36849 1.000000
25 2 '0.46379 1 000000

,..~
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Table 4: n=400, m=256, mo=255

-est mestO t-delta confidence

32 29 3.62492 0.0079q9

64 61 4.33606 0.150741

96 93 4.74737 0.348278

128 126 5.67589 0.780792
Mt' 160 158 5.90027 0.843953

192 190 6.08341 0.883566

224 223 7.31654 0.987113
256 255 7.45031 0.990000

A,,288 287 7.56828 0. 992016

320 320 10.36849 0.999968

52Z ZC.46379 0.999974

Table 5: n=400, m=320, mo=320

-p-- t .epteQ t-dlta' cnnfldenre

32 29 3. 62492 0.000176
64 61 4.33606 0.014760

96 93 4 .74731 0.061547

128 126 5.67589 0.333297

160 158 5. 90027 0.415785
192 190 6.08341 0.481642

224 223 7.31654 0.808402
256 255 7.45031 0.830226
288 287 7.56828 0.847599

320 320 10.36849 0.990000
312 352 10.46379 0,92090)5

N

I.

I'



165

Table 6: n=4000, m=640, mo=606

,.t resrO t-delta confidence

32C 283 2.52456 0.005219

640 606 3.32923 0.990000

960 929 3.84950 0.999999

1280 1253 4.30731 1.000000
1600 1576 4.67666 1.000000

1920 1899 5.02625 1.000000
2240 2223 5.44912 1.000000
2560 2546 5.83469 1.000000
2880 2869 6,27297 1.000000
3200 3192 6.81531 1.000000
'A-)o 35 -1.91267 ' 000000

Table 7: n=4000, tn=1280, mo=1253
N.r t e t t-HeIta confide-nre

320 283 2.52456 0.000000

640 606 3.32923 0.001586

960 929 3.84950 0.532488

1280 1253 4.30731 0.990000
1600 1576 4.67666 0.999955

1920 1899 5.02625 1.000000
2240 2223 5.44912 1,000000

2560 2546 5.83469 1.000000
2880 2869 6.27297 1.000000

3200 3192 6.81531 1.000000
_ 20 3516 7.91967 1.00000Q

Table 8: n=4000, m=1920, mo=1899

-Qst mestO t-delta confidence

320 283 2.52456 O.OCO000

640 606 3.32923 0.000000

960 929 3.84950 0.000423

1280 1253 4.30731 0.195984
1600 1576 4,67666 0.808547

1920 1899 5.02625 0.990000
* 2240 2223 5.44912 0.999950

2560 2546 5.83469 1.000000

2880 2869 6.27291 1.000000

3200 3192 6.81531 1.000000I. S20 3516 7.91967 1.00000

V
0,
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Table 9: n=4000, m=2560, mo=2546

most e4st0 t -60 ) 3 A 00002c

310 283 2.52456 0.000000

640 606 3.3292J 0,000200
'" 963 9?9 3 . 84950 0. 00oo)
,2Z 1280 1253 4 .307 0.000051

- 1600 1576 4. 67666 0.020948

22,10 2223 5.44912 0,853912

2560 2546 5.83469 0.990000

2880 2869 6.27297 0.999846
k"-32C0 3192 6 .81A31 1.000000

51:, C, 75] 7.91967 1 -.ooo0 Oo

Table 10: n=4000, m-:-3200, ino=3192

_ -. e s . c t 0 Lt- dc, t a con tidpnce

" 320 283 2.52456 0.000000
640 606 3.32923 0.000000

960 9,29 3.84950 0.00000C
1280 1253 4.30731 0.000000

16C0 1576 4.67666 0.000002

1920 1899 5.02625 0.0010 4

2240 2223 5.44912 0.069317

2560 2546 5.93469 0.409274

2880 2869 6.27297 0.843571

3200 3192 6.81531 0.990000
3520 1516 7.91967 0.999996

\', %

3-'
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§ 53 The Numerical Results for Procedure I

We numerically evaluate the performance of Procedure I in this section. Similarly

to the previous section, the first five tables evaluate the perfomance of this procedure

r when the lot size is small, i.e., n=400. The last table tells us the perforniance of this

procedure when the lot size is large. As mentioned in Section 2.3, we use three

euuations, (2.3.3), (2.3.,4) and (2.3.5), to compute upper bounds t*, for the waiting

times between successive failures, so the tables in this section have all these three t*s

.L computed. The three corresponding expected durations of burn-in time are also

computed here.
IF-

Notations used in these tables:

(The notations which were defined in §5.2 will not be given here.)

t*(3): The upper bound, which is calculated by using equation (2.3.3), for the waiting

times between successive failures,
Lw

-- t*(4): The upper bound, which is calculated by using equation (2.3.4), for the waiting

-= times between successive failures,

t*(5): The upper bound, which is calculated by using equation (2.3.5), for the waiting

F: times between successive failures.

ED(3): The expected duration of bum-in of Procedure I when upper bound t*(3) is

used.ED(4): The expected duration of burn-in of Procedure I when upper bound t*(4) is

used.

ED(5): The expected duration of bum-in of Procedure I when upper bound t*(5) is

K "used.

. o ,,+ - .- .. ,.- . - . .* . + - * .- - , .. - - +, - . ' . N *. .* . -. - , + - o - - . + .



168

P(R(3)): The probability of achieving R(t,D,m,r.) p when upper bound t*(3) is

used.

P(R(4)): The probability of achieving R(t,D,m,n) ! p when upper bound t*(4) is

used.

P(R(5)): The probability of achieving R(t,D,m,n) p when upper bound t*(5) is

used,

For thei small lot case, Table 11 to Table 15, we can see that t*s and EDs change

only when mesLt-mesto is changed. There is no significant difference among t*(3), t*(4)

and t*(5), nor among the corresponding expected durations. This tells us that we can

F. -use the most simplified equation to compute t* without losing too much. If n and the

true m are fixed, then the probability of achieving R(t,D,m,n) p increases as mest-

m- to decreases and this probability does not have any change whee m est increases but

meS-m1 mq :emains constant. If the assumed m is less than the true m and met-meto is

the same as m-mo, then we will be able to achieve our reliability, P(R(tD,m,n) p) ac.

:f the assumed n: is less than the true m and meSt-mcsto is larger than m-mo, then this

reliability goal is not achievable. However, the drop-off in confidence as mest falls

," .-'-below m is not nearly as great as with Procedure 0. If the value of m is over-estimated,

the quaFty of an after-bum-in lot will be higher than what is required and the duration

of bum-in will also be longer than what is needed.

For the large lots, n-4000, the numerical results tell us the same properties of this

procedure as the small lot size case tells us. Similarly to the large lot case of Procedure

0. the expected duration of bum-in is significantly reduced if the lot size is increasedK from 400 to 4000 when the assumed value of m is not too close to n. (The
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S performance of Procedure I when the lot size is large is similar to its performance when

n is small, so the other tables given in Section 5.2 will not be given here.,

* "V

I,"

4.
4. -

",- a-

*n%'

I i " I iI. I Ii.
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Table 11: n= 400, m = 64, mo=61

neg~'~'e'~t' - (31 (4) )5) -:2 L~I f4 F In) 
0

I 131P (R(41P (P I

32 29 1.2364 1.2370 1.237 5.1762 5.1771 5.1771 .9900 .9900 9900
", "64 61 1.2364 1.2370 1.237 5.1762 5.1771 5.1771 .9900 .9900 .9900
,-, 95 93 1.2364 1.2370 1.237 5.1762 5.1771 5,1771 .9900 .9900 .9900

128 126 1.6089 1.6094 1.609 5.7623 5.7630 5.7630 .9979 .9980 .9980
160 158 1.6089 1.20 1.609 5.7623 5.7630 5.7630 .9979 .9980 .9980
192 190 1.6089 1.6094 1.609 3.7623 S.7630 5.630 .9979 .9980 .9980

224 223 2.3521 2.3525 2.352 6.7626 6.7631 67631 .9999 .9999 .9999
V - 256 255 2.3521 2.3525 2.352 6.1626 6.7631 .7631 .9999 .9999 .9999

288 287 2.3521 2.3525 2.352 6.7626 6.7631 67631 .9999 .9999 .9999
320 320 4.6150 4.6151 4.615 9.3031 9.3032 9.3032 1.000 1.000 1.000

21252 4.6'50 2.615! 4,615 9.3031 9.3032 9-3032 1000 1.000_109

Table 12: n=400, m=128, mo=126

-0,-zca-0 -(3) * f4) D5) V9(71) 99(4) EDn 5. P(R (3))PR1 P(R (5f

32 29 1.2364 1.2370 1.237 5. 865 5.8664 5.8664 .9557 .9658 .9658
64 61 1.2364 1.2370 1.237 5. 865 5.8664 5.8664 .9657 .9658 .9658
96 93 1.2364 1.2370 1.237 .9 865 5.8664 5.8664 .9657 .9658 .9658

128 126 .6089 1.6094 1.609 6,451 6.4523 6.4523 .9900 .9900 .9900
160 158 1.6089 1.6094 1.609 6.451 6.4523 6.4523 .9900 .9900 .9900
192 190 1.6089 1.6094 1.609 6.451 6.4523 6.4523 .9900 .9900 .9900
224 223 2.3521 2.3525 2.352 7.451 7.8565 7.4524 .9990 .9990 .9990
256 255 2.3521 2.3525 2.352 7.451 7.4524 7.4524 .9990 .9990 .9990
288 287 2.3521 2.3525 2.352 7.451 7.4524 7.4524 .9990 .9990 .9990
320 320 4.6150 4.6151 4.615 9.992 9.9925 9.9925 .9999 .9999 .9999[ 4 .615 ' .6151 4.61 9.992 9,9925 9.9925 _ 99 .9999 9999

,-".+Table 13: n=400, m=192, mo=190

I ..

32 29 1.2364 1.2370 1.237 6.269 6.2705 6.2-70b .9657 .9658 .9658
64 61 1.2364 1.2370 1.237 6.269 6.2705 6.2705 .9657 .,658s .9658

L[- -96 93 1.2364 1.2370 1.237 6.269 6.2705 6.2705 .9657 .95 .68
l,-,-128 126 1.6089 1.6094 1.609 6.855 6.8564 6.8564 .9900 .9900 .9900
$-'""160 158 !,6089 1.6094 1.609 6.855 6.8564 6.8564 .9900 .990 .9900
.,192 190 1.6089 1.6094 1.60)9 6.85.5 6.8564 6.8564 .9900 .9900 .9900

224 223 2.3521 2.35125 2.352 7.856 7.8565 7.8565 .9990 .9990 .9990
,- 2 6 255 2.3521 2.3525 2.352 7.856 7.8565 7.8565 .9990 .9990 .9990

m".288 287 2,3521 2.3525 2.352 7.856 7.8565 7 8565 .9990 .9990 .9990
S-320 320 4.6150 4,6151 4.615 !0,396 10.3966 10.3966 .9999 .9999 .9999

4 - - - - - - - -5 - -1 5: 51 4. 6 
1
0 , 796 10 106. 6 10.3966 . 9 929')-.. 99 9999
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Table 14: n=400, m=256, mo=255

r3 * () t*(4) *(5) rrfl 3 ) E)(41 VD(5 P(R(3I P(R(4fl PRet91L
32 29 1.2364 1.2370 1,237 6.556 6.5576 6.5576 .8843 .8844 .884464 61 1.2264 1.2370 1.237 6.556 6.5576 6.5576 .8843 .8844 .8844
96 93 1.2364 1.2370 1.237 6.556 6.5576 6.5576 .8843 .8844 .8844

128 126 1.6089 1.6094 1.609 7.142 7.1435 7.1435 .9503 .9504 .9504
160 158 1.6089 1.6094 1.609 7.142 7.1435 7.1435 .9503 .9504 .9504
192 19 1.6089 1.6094 1.609 7.142 7.1435 7.1435 .9503 .9504 .9504
224 223 2.3521 2.3525 2.352 8.143 8.1436 8.1436 .9900 .9900 .9900
256 255 2.3521 2.3525 2.352 8.143 8.1436 8.1436 .9900 .9900 .9900
288 287 2.3521 2.3525 2.352 6.143 8.1436 8.1436 .9900 .9900 .9900
320 320 4.6150 4 .6151 4.615 10.683 10.6837 10.6837 .9999 .9999 .9999
352 352 4.6150 4.6151 4.615 10 693 10 6837 10,6837 .9999 9990 .9999

Table 15: n=400, m=320, mo=320

-- I, y(41 r() P(P(3)) (4P) (5)
32 29 1.2364 1.2270 1.237 6.7794 6.7803 6.7803 .(275 .6277 .6277
64 61 1.2364 1.2370 1.237 6.7794 6.7803 6.7803 .6275 .6277 .62774 96 93 1.2364 1.2370 1.237 6.7794 6.7803 6.7803 .6275 .6277 .6277

128 126 1.6089 1.6094 1.609 7.3655 1.3662 7.3662 .7601 .7603 .7603
160 '58 1.6089 1.6094 1.609 7.3655 7.3662 7.3662 .'601 .7603 .7603
192 1O 1.6089 1 .6094 1.609 7.3655 7.3662 7.3662 .7601 .7603 .7603
224 223 2.3521 2.3525 2.352 8.3658 8.3663 8.3663 .8957 .8954 .8958
256 255 2.3521 2.3525 2.352 8.3658 8.3663 8.3663 .8957 .8958 .8958
288 287 2.3521 2.3525 2.352 8.3658 8.3663 8.3663 .8957 .8958 .8958
320 320 4.6150 4.6151 4.615 10.9063 10.9064 10.9064 .9900 .9900 .9900
'52 2. 4.6'50 4.6151 4.615 10.9063 10.9064 10.9064 -9900 .9900 -9900

r.

I

! 
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~~. "Table 16: n=4000, m=640, mo=606
%-- j -s t -n st0 t'f 3 r- 4 t*c5 3I FD!3 P (e fl(5 P( R'3rn P(4 1  P Rs 5r

220 283 0.1699 0.1700 0.1700 3.9356 3.9365 3.9365 .9834 .9834 983s640 606 0. 1825 0.1827 0.1827 4 .0441 4.0451 4.3451 .9900 .9900 .9900960 929 0. 1974 0.1976 0.1976 4 .1540 4,1650 4.1650 .9944 .9944 9944'., 1280 1253 0.2219 0.2221 0,2221 4.3460 4.3470 4.3470 .9978 .99,8 .9978
1600 1576 0.2450 0.2452 0.2452 4.5038 4.5048 4.5048 .9991 .9991 .99911920 1899 0.2740 0,2742 0.2742 4.6857 4.6867 4.6867 .9997 .9997 .99972240 2223 0.3266 0.3268 0.3268 4.9798 4.9808 4.9808 .9999 .9999 .99992563 2546 0.3830 0.3833 0.3833 5.2558 5,2569 5.2569 .9999 .9999 9999
2880 2869 0 4657 0.4660 0.4660 5. 6038 5.6040, 5.6049 1.000 1.000 1.000320 3192 0.5997 0.6001 0.6001 6.0661 6,0671 6.0671 1.000 1.000 1.000

1 35-6 Q09 1114 1 0j14 7 06 7 0617 7_lfI060Gp 1.000 1.QQ_

Table 17: n=4000, m=1280, mo=1253

mest mestO t*(3) t*(4) t*(5) ED(3) ED(4) ED(5) P(R(3)) P(R(4)) P(R. )320 283 0.1699 0.1700 0,1700 4.6283 4.6292 4.6292 .9464 .9466 .9466* 640 606 0.1825 0.1827 0.1827 4.7369 4.7378 4 .7378 .9645 .9646 .9646960 929 0.1974 0.1976 0.1976 4.8568 4.8577 4 .8577 .9780 .9781 .9781:293 1253 0.2219 0.2221 0.2221 5.03A7 5.0397 5.0397 .9900 .9900 .99006-3 1576 0.2450 0.2452 0.2452 5.1965 5.1975 5.1975 .9951 .9952 .9952,920 1899 0.2740 0.2742 0.2742 5.3784 5.3795 5.3795 .9930 .9960 .99802243; 2223 0.3266 0.3268 0.3268 5.6725 5.6736 5.6736 .9996 .9996 .9996-zC. 2546 0.3830 0.3833 0.3833 5.9486 5.9497 5.9497 .9999 .9999 .9999:893 2869 0.4657 0.4660 0.4660 6.2966 E.2977 6.297t .9999 .9999 .9999
3C0 3192 0.5997 0.6001 0.6001 6.7588 6.7599 6.7599 1.000 1.000 1.000>'.,'.. 2'2"_" SUE "1% . 131.14 10114 7.7534 7.7543 -,7543 ,0 0 1Go 1

V%

5i--
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§ 5.4 The Numerical and Simulation Results for Procedure II

The performance of Procedure II is evaluated by simulation. Before this evaluation

can be done, we must decide which k value should be used. In Section 4.4, a

computation scheme to find a suitable value for k is derived by using equation (4.4.10).

If the lot size is large, i.e., n=4000, this computation scheme gives us an excellent

value of k (Table 24 and Table 25). However, the simulation study tells us that the

value of k obtained by using Equation (4.4.10) is not applicable when the lot size, n, is

small, i.e., n=400. In this case, the value of k calculated by using Equation (4.4.10) is

above 1 very often.

When the lot size is small, the value of k is obtained by using a simulation. We

pick a number between p and 1, and run a simulation to see how well this k performs,

for a given m. If our reliability goai P(R(t;D,m,n) p) c is ensured by using this k,

then we'll check whether the simulated probability value is close to oa or not. If the

simulated probability is not too far away from x, then we can use this k. Otherwise, we

need to pick a smaller k ( _p). On the other hand, if our simulated probability is smaller

than cx, then pick a larger k and do this simulation again, that is: repeat this procedure

until an acceptable k is obtained. Table 18 to Table 24 tell us how k is obtained when

7 the lot size n is 400.

Before we have any further discussions in this chapter, let's define the notation
S8.-

used in this section. (The notation defined in the previous two sections will not be

repeated here.)

N,~~~~~~~~~~ X . .- . .%,%7 % l j . r #'
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expected-dt: This is the expected duration of bum-in when this bum-in procedure is

used.

k(mest): The value of k derived from Equation (4.4.10) with the assumed value of m

being mest.

For the small lot size case, we vary the value of k from .9940 to .9995, i.e.,
k=.9940 is used in Table 18, k=.9950 is used for Table 19, ..., k=.9995 is used for

Table 24. When the lot size is 400 and the true number of the defective items is 64, by

comparing the "confidence" column of Tables 18 to 24, we can see that our reliability

goal is achieved, if k=.996 (Table 20) is used. Similarly, when the lot size is 400 and

the true number of the defective items is 128, comparing the "confidence" column of

Tables 18 to 24, we can see that our reliability goal is achieved, if k=.998 (Table 22) is

used. So, for the case of small lot size burn-in, we can use this approach to obtain the

appropriate k.

Since we never know the true value of m, we design Procedure 2 by using the k

corresponding to our estimated m. For instance, if we guess m to be 64, we use

k--0.996 which was pointed out above as the appropriate choice in that case. Table 20

can now be read as showing how confidence and expected duration vary with different

values of the true m when the estimated m is fixed at 64 (the only effect m est has is in

determining the value of k to use). This is different from the previous sections where

each cable showed confidence and expected duration as mest varied for a fixed value of

n. For instance, when m st = 64, Table 20 shows that when m=352 (so ihat we have a

innjor underestimate), the confidence is still 0.987. Table 20 also shows that if the true

m is 32, the achieved confidence is 0.984 so that, for this procedure, overestimating m
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does not guarantee the confidence requirement. A look at Tables 18 to 24 suggests that

the confidence of Procedure II is less sensitive than that of the other two to mis-

specification of m.

*For the large lot size case, the value ef k caii be derivcd from Ecuation (4.4.10).

Table 25 tells us a simulation result for the case: m=640, a-=4000, p=.99, 1-exp(t)

- =.99, cx=.99 when the assumed value of m, mest, is ranging from 323 to 3520 and the

number of simulation runs is 2000. The expected duration of burn-in given in this table
-.:. -

shows that it, expected-dt, increases as the assumed value of m is increases but it is not

very significant 1er a very wide range of m (by comparing to the other procedures).

Furthermore, the values in the "confidence" column or "k(mest)' colurm preserves the

a': monotone property: their values increase as m increases. But, these are not always

monotone. For "confidence", if we let de increment between the consecutive mest's be

small enough, then we will be able to see that "confidence" is not a monotone function

in m. This numerical result is not shown here. For k(mest), we can see from Figure 4

". of Section 4.6 that k(m) is a U-shaped function of r (or m). In addition, all the values

in the "confidence" column are above the required lower bound cx, i.e., our reliability

,'A, goal is always ensured in this case: large lot size bum-in.

-,-0
.v Table 26 shows a simulaticn result for the case n=40C0, p-.99, 1-exp(-t)=.99,

cx=.99 when the assumed value of m is the same as the true value of m, where m venes

from 320 to 3520. The number of sinmulation runs is 2000. We can see that the values

in "confidence" column have a very little variation as in Table 24. In addition, all of

these values in "confidence" column are above 0.99, so k(mst ) obtained here is

co'iscrvative. Furthermore, the value in the "expected-dt" column increascs as m
AOt

4N,
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increases, too. An application of this table is that, if an upper bound of m in a bum-in

lot is known, it can be used to figure out the upper bound of the duration of bum-in

which might be required to achieve the desired confidence For example, if the upper

bound of m is 1600, n is 4000 and the desired confidence is 0.99, then the upper

bound of the expected duration of burn-in will be around 4.81.

p.'

O.,

I., I I I I II I



177
STabe 18: k=0.9940, n=400

- -O cc'fidepce expected-dAr
32 29 0.917499900 2.688606739

.. 64 61 0.948999941 3.461193562
96 93 0.960499883 3.960860491

128 126 0.916499913 4.357289791
160 158 0.936499894 4.704833984
192 190 0.964999914 5.029990196
224 223 0.900999904 5.351178169
256 255 0.946999967 5.686598301

288 287 0.975999951 6.056697369
320 320 0,916499972 6.502041340

-2 -2'6199 02 7 '1r12872
o nube f simrulation runs=2GOO

Table 19: k=0.9950, n=400
N" - -0 conide-ce eopec-tedi-dr

32 29 0.952999890 2.872345686
64 61 0.971499920 3.644049644
96 93 0.977999866 4.144165039

128 126 0.948499918 4.540705204

160 158 0.959499955 4.888323784
192 190 0.979999900 5.213341713
221 223 0.924999952 5.534407616
256 255 0.96399992-7 5,869949341
288 287 0.983999908 6.240071774
"7 n 23 C n.919990438 -.68537855

-uber of sirulation runs=2000

.3 Table 20: k=-0.9960, n=400

"" cc.....denr-e rxnecred-dr

32 29 0.984499872 3.230851650
64 61 0.992499948 4.001834669
96 93 0.995499909 4.502047062

128 126 0.977999926 4.898869514
160 158 0.986999869 5.246265888
182 190 0.990999937 5.571498394
224 223 0.973999916 5.892687798
256 255 0.98449993. 6.221913851
283 287 0.9909999.7 6.598282337
320 320 0.966999948 7.043487072
352 V2 0.986999929 7- 67j_.jj.

r urber of simulation runs=2000

~1%

.

.4.
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Table 21: k=0.9970, n=400

M -0 c'nftdence e
32 29 0.992999911 3.385284662

p 64 61 0.995999932 4.156266212
96 93 0.997999907 4.657020092

"4 128 126 0.986999929 5.053611755- 060 5 0.991999924 5.400946140

192 190 0.993499935 5.726118088
224 223 0.985499918 6.047466278
256 255 0.990499914 6.382554531
288 287 0.994499922 6.753048420
320 320 0.975999951 7.198336124

9932; 19 7 7 9R1?98705

- nucmer of similation runs=2000

Table 22: k=0.9980, n=400
- --0 confidence exoected-t

32 29 0.997999907 3.792477846
64 61 0.99899989, 4.562776566
96 93 0.999499917 5.063402653

128 126 0.996499956 5.460057259
160 158 0.996999919 5.807489395
192 190 0.999999940 6.132760525
224 223 0.995499909 6.453858852
216 255 0.996999919 6.788960457
288 287 0. 998499930 7.159490585
323 320 0.987999916 7.604671001

v. - ._ c< = go.99o'95 8.2' 9264070

number of simulation runs=2000

Table 23: k=0.9990, n=400
_: - -0 - fdne exoected-dc

* 32 29 0.999999940 4.486933231

64 61 0. 999499917 5.256338457

95 93 -.99999994O 5.757544041
'- :29 126 '.999999940 6.154276848
-- : 158 0.999999940 6.501723766

* 292 19 0. 999999940 6.826681137
224 223 C,999499917 7.247979736
2 S -6 25 0. 999499977 7.483013630
288 287 .999999940 7.853713989

.20 320 .996999919 8.299383163
-: 352 0 999999940 8,923649559

r -f simulation runs=2000

0=4,
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Table 24: kO.9995, n=400

At - conidence -Xn-cted-dt

32 29 0.999999940 5.180879116

64 61 0.999999940 5.950780392

96 93 0.999999940 6.451091766

128 126 0.999999940 6.848046780

160 158 0.999999940 7.19538u887

192 19o 0.999999940 7.520209789

224 223 0.999999940 7.841574669

2E6 255 0.999499917 8.176671982

288 287 0.999999940 8.548100471

320 320 0.999499977 8.993374825

]2 2990."9909940 9. 07625C8
?.zner f siulation runs=2000

Table 25: true m=640, mO=606, n=4000, number of simulation runs=2000

s -' C S Z0 exced-dt cc-idence k(rnest)

23/ 283 3.41542983 0.99699962 0.9939

643 vC6 3.44064760 0.99749953 0.9940
960 929 3.47614026 0.99899948 0.9942

1260 1253 3.50661421 0.99899954 0,9944

160:9 1576 3.5607MI73 0.99899942 0.9947
1)2C 1999 3.63243365 0.99949944 0.9950

2243 2223 3.69857264 0.99949974 0.9953

2560 2546 3.83282208 0.99949956 0.9959

28 0 2869 4.06088781 C.99949914 0.9968
3200 3192 4.57958984 0.99949974 0.9981

:*-7 356 5.94751795 £.99949992 0 _995

) Table 26: n=4000, mest equals n, number of simulation runs=2000

:r : confi-ee excected-d

323 283 0.997499466 2.632653475

b43 606 0.997499526 3.440647602

j---, 929 0.997999489 3.980712652

1290 1253 0.997999668 4.409400940

1600 15;1 0.997499764 4.811255932

1920 1899 0.998% 9596 5.208187103
2240 2221 0.998999715 5.595121861

256, 2546 '.99
7
9996t8 6.063158512

- zE9 0.997499883 6.659555435

3 2% 3192 0.997499883 7.619450092

- 1750( B:28
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§ 5.5 Comparisons

Based en the results of the numerical computations and simulations, we have the

following conclusion., !f the bum-in lot size is small, n=400, and the true value of m

can be estimated reasonably accurately, then using Procedure 0 is the best choice. The

reason is that Procedure 0 will give us the exact confidence with the minimum expected

duration of bum-in if m is known. Fo example, let us look at the case m = mest = 64.

Procedure 0 has t-delta = 4.34, Procedure I has E(D) = 5.2 and Procedure II has E(D)

= 4.00. Here, the expected duration for Procedure II is less than t-delta of Procedunt

0. This difference can be due to the randomness of the number strings generated by

computer. Ii this example, the expected duration of bum-in for Procedure I is tile

Ion vest one. Moreover, in this small lot size case, if the dispersion in m is large or the

value of n, is unpredictable, Procedure I would be a good choice, because Procedure I

-* i3 less sensitive to the assumed m, mest, than Procedure 0. Here, we may use

-' Procedure II, but the large sampie theory for this procedure is not applicable and k must

be obtained either from a direct calculation or siniulaticn. The value of k obtained by

using simulation turns out to give us the best bum-in procedure: it is not sensitive to the

as:;urned value of m and its duration of bum-in is close to the minimum requirement.

O
On the other hand. if the bum-in lot size is large, n=4000, Procedure II is

V recommended. In this case, Procedure 11 is not only v;ery insensitive to the assumed
-.

value of ir. but also its expected .uration of bul -in is close to the minimum required

duration of burn-in. Here, we may use Procedure 0, but the risk of not achieving our

reli.bility goal is very great if the value of m is ',nder-estimated. Procedure I is less

sensitive than Procedure 0, but it iequi-es a longer duration of bum-in.

0--
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"-"" CHAPTER 6

S§6.1 Summary

-= -- '- Three bum-in procedures have been considered in this research. Ile performances

i5 of 'iese procedures were compared in the previous chapter. When the lot size is

.1

-.- '-:: small, we can consider using Procedure 0 if m can be accurately estimated, or using

" " Procedure 1. In this small lot size case, if a burm-in procedure which is very

"" " insensitive to the assumed value of mr, is requiredt and the duration of burn-in is

. required to be as short as possible, then we can try to use simnuation to find an

-S

..... appropriate k and use Procedure 11. When the lot size is large, Procedure II is the fir-st

procedure ho be considered. 'his procedure is very insesitive to the assumed value

oi no and its expeed duration of bur -in very close to the duration of burn-in

whe. t.he number of defective items is known, i.e., the minimum required. burm-in

time. In O.is case, Procedure 0 is unable to achieve our reliability if m is under

• ''."estimated and its expected duration of buni-in is too long if mn is ovev- estimated too

much. Here, we can consider to use Procedure 0 only if we an very accurately

oestimate the unknown value m For the large lot size case, Procedure I is not

recorended. e reascns are: if we can accurateiy estmate te true value of m, then

Procedure 0 perfom s better than Procedure ; and if we cannot accurately esfis ate tie

prcdr o-ecnierdhspocdr sveyisniiv oteasue au

ofi n tsepce.drto f u-ni1er8ls1o h uaio fbmi

whntenubro dfcieitm sknwie._h iimmrqirdbmi
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true value of m, then Procedure I is much more sensitive than Procedure II and it has

longer expected duration oi burn-in than Procedure i.

.'.
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t §6.2 Related Research and Future Research

The original motivation of this dissertation was to design non-replacement bum-in

aprocedures for a batch of semiconductors with a known life time distribution

(parameters are known) and an unknown proportion of defecive items. The cost of

burn-in is considered in this research, but no c, t function is given here. Burn-in

procedure with replacement is not considered, either. Bum-in with known life time

distribution but with unknown parameters should be considered, too. In addition, the

A consideiation of component bum-in and of system bum-in are not the same. Some of

these topics are mentioned in Jensen and Petersen (1982)

For consideration of cost, see Kuo and Kuo (1983) for a very good summary

N.14 about the existing bum-in cost models. A very comprehensive list of the existing

.- - papers about cost consideration is given in this paper. The references about this

.-subject will not be given here. Kuo and Kuo also have a good discussion about cost

minimization and savings. In addition, some warnings on cost modeling and cost

optimization are presented in thei" paper.

A with-replacement bum-in procedure for the case that the parameter of the life

A. time distribution of the defective items is unknown, was considered briefly during the

preparation of this dissertation. If the life time of the perfect items is assumed infinity,

then some process that is derived from the burn-in procedure is a biith-and-death

* as . process. Statistical inference about the parameters of a birth-and-death process can be

found easily in Billingsley (1961) or Basawa and Prakasa Rao (1980).

0..n
-J-P z rA%"
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F" Another without replacement piocedure was investigated during the preparation of

this dissertation. This procedure is obtained by finding an estimator of m . From

Epstein and Sobel (1954), we know that 2 times the sum of the life times of the first j

t.,'C failed defective items plus 2(m-j) times the lifetime of the jth failed defective item has

a X2 distribution with 2j degrees of freedom. Therefore, an estimator of m can be

calculated if an appropriate value is assumed for this X2 random variable (e.g., its

expectation). A new stopping rule can be developed by replacing the MLE of m with

this estimator of m. This is the idea of this procedure.The properties of the statistic

.. for this procedure have been studied briefly: this statistic is a linear combination of

o :er statistics and its limit goes to a nonstationary Gaussian process with known

mean and variance. Some stopping times based on this statistic have been looked at,

but no satisfactory stopping time has been obtained yet. It will be studied further in

the future.
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Appendix

'.%"

0We assume that M has a prior binomial distribution, say binomial(n,r). The

following two tables compare the relationship between the t's, for Procedure I, derived

by using Equations (2.3.5) and (2.9.3). Here, r is E(M/n), r.99 is the 99-percentile of

M/n obtained by using the normal approximation, t*mg is the t* obtained by using

Equation (2.9.3), and t*(5,r) is the t* obtained by using (2.3.5) with m = r-n. This last

-K value is given as a reference for the t* which would be used if M were a known

constant.

r A small n is used in Table 27. If r = .040 is used, then r.99 = .06282, t*mg
"mg

1.0419. In addition, t*(5,.06282) is 1.2370. In this table, we can see that t*mg

"ncreases as r increases and t*(5,r.99) is a step function in r. (The function t*(5,r.99) is

a step function in r becasuse it is a function of m-mo and m-mo is a step function in m

(or r)). The value t*mg gets close to the corresponding t*(5,r.99) as r increases before

t*(5,r.99 ) reaches a jump and then gets close again. Most of the time t*(5,r 99 ) is

greater than t*mg except before t*(5,r.99) has a jump. In addition, this table shows us

that t*mg is very close t*(5,r.99) when it is greater than t*(5,r.99).

A large n is used in Table 28. If r = .18 is used, then r.99 = .194153, t*mg

0.18767, t*(5,.194153) = 0.192248. We can see that t*(5,r.99) is always greater than

t*mg in this table. Furthermore, the difference between t*mg and t*(5,r.99) is less than

.02 for each r.
i B.,185

6-'

-! O ,.*!% %

" '3.«t:? 9"# Zt9 t# '4 .b&t& &,.AAQ~~a



186

Table 27: n=400, 1-exp(-t)=.99, r-0.99, a=0.99

I.rrnn r,99 t*mg t*(5,r) t*(5.r 99)
.02000 .03631 1.02266 1.01144 1.23700
.03000 .04987 1.03219 1.23700 1.23700
.04000 .06282 1.04191 1.23700 1.23700
.05000 .07539 1.05183 1.23700 1.23700
.06000 .08766 1.06195 1.23700 1.23700
.07000 .09972 1.07229 1.23700 1.23700
.08000 .11160 1.08285 1.23700 1.237C0
09000 .12334 1.09364 1.23700 1.23700
.10000 .13495 1.10466 1.23700 1.23700

.11000 .14645 1.11592 1.23700 1.23700

.12000 .15785 1.12744 1.23700 1.23700

.13000 .16917 1.13921 1.23700 1.23700

.14000 .18042 1.15126 1.23700 1.23700

.15000 .19159 1.16358 1.23700 1.23700

.16000 .20270 1.17619 1.23700 1.23700

.17000 .21376 1.18910 1.23700 1.23700

.18000 .22475 1.20232 1.23700 1.23700

.19000 .23570 1.21586 1.23700 1.23700

.20000 .24660 1.22974 1.23700 1.23700

.21000 .25745 1.24396 1.23700 1.23700

.22000 .26825 1.25855 1.23700 1.60943

.23000 .27902 1.27350 1.23700 1.60943

.240C0 .28975 1.28885 1.23700 1.60943
250C0 .30044 1.30460 1.23700 1.60943
26000 .31110 1.32078 1.23700 1.60943
27000 .32172 1.33739 1.60943 1.60943
28000 .33230 1.35446 1.60943 1.60943

.29000 .34286 1.37201 1.60943 1.60943

.30000 .35338 1.39006 1.60943 1.60943

.31000 .36388 1,40862 1.60943 1-6091

Table 28: n=4000, 1-exp(-t)=.99, r=0.99, a=0.99

r=- /n ro tmg t*(5.r) t(5.r.99)

.04000 .047219 0.16346 0.15970 0.166094
U 06000 .068749 0.16650 0.16255 0.166094

.08000 .089994 0.16967 0.16619 0.166915
10000 .111052 0.17297 0.17002 0.173930
.12000 .131971 0.17641 0.17403 0.178152
.14000 .152783 0.18000 0.17826 0.182599
.16000 .173505 0.1375 0.17826 0.182291

* 18000 .194153 0.18767 0.18271 0.192248

.20000 .214736 0.19178 0.18740 0.192248

.22000 .235261 0.19608 0.19236 0.197494

.24000 .255733 0.20059 0.19761 0.203056

.26000 .276159 0.20533 0.19761 0.208964

.28000 .296541 0.21031 0.20318 0.215253
_JflQD .361 82 0.21556 0.20909 0.221960

"
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